
Modern Approximate Inference:
Variational Methods and Beyond

Diana Cai
dcai@flatironinstitute.org

Yingzhen Li
yingzhen.li@imperial.ac.uk

mailto:dcai@flatironinstitute.org
mailto:yingzhen.li@imperial.ac.uk

Why Probabilistic Inference?
Causal Inference and Causal Discovery

! "

#

$

!: smoking
": tar in lungs
$: lung cancer?

#: hidden confounder

How to estimate causal effects and/or discover causal relationships,
when there exists hidden confounders?

1

Why Probabilistic Inference?
Uncertainty Quantification (Desiderata)

Here’s the conditions of this construction site:

…

Could you tell me what the potential safety issues are?

Here’s a list of potential safety issues that need to be look after:

[Issue 1] with x% confidence (breakdown quantities)

…

Here’s this patient’s health record:

…

Could you suggest some next actions to improve her conditions?

Here’s a list of potential treatment options based on the health record:

[Treatment 1] with x% confidence (breakdown quantities)

…

2

Why Probabilistic Inference?

https://web.stanford.edu/class/cs279/lectures/lecture4.pdf
https://en.wikipedia.org/wiki/Thermodynamic_free_energy

• Energy of the molecular state: !(#)
• “Atoms never stop jiggling”

• Sampling from the Boltzmann distribution (target):

%! ∝ exp[−
! #
,"-

]
• Computing “free energy”

Molecular Dynamics Simulations

Protein foldingMaterial designDrug discovery

3

https://web.stanford.edu/class/cs279/lectures/lecture4.pdf
https://en.wikipedia.org/wiki/Thermodynamic_free_energy

The Central Computation Problem

∫ " # $ # %#
probability
measure

((un)normalized)

integrand
function

Random latent variable (unobserved)
prob. density

(We view Jensen Huang’s “inference” terminology as “prediction”.)
(For discrete probability measures, integration becomes discrete sum.)

• Inference: infer the unknowns
• Unobserved/latent variables in the model
• Quantities depending on the latent variables in the model

Computation for Inference:
“statistics about the unknown”

4

Computation Challenge

∫ " # $ # %#
• The central computational task for probabilistic inference:

Causal Inference and Causal Discovery: Counterfactuals

! "

#“What is the counterfactual outcome ! if I
change the cause value to "′ instead?

% # = '($|! = !′, #), - # = ' # !, $),
!, $ = observed cause & outcome
!! = alternative cause value

5

Computation Challenge
• The central computational task for probabilistic inference:

∫ " # $ # %#
“What is the prediction

distribution of the test output
given a test input?”

% # = '($|!, #), - # = ' # .),
. = observed datapoints

Uncertainty Quantification

6

Computation Challenge
• The central computational task for probabilistic inference:

∫ " # $ # %#
“What is the free energy of a

thermodynamic system
at a particular end state?”
% # = 1, - # = exp[−5(#)/7"8],

:- =
1
; exp[−5(#)/7"8]

−7"8 log ;: “free energy”

Molecular Dynamics Simulations

(for biological conformational changes, ligand-macromolecule
binding, chemical reaction mechanisms, etc.)

https://web.stanford.edu/class/cs279/lectures/lecture4.pdf
https://en.wikipedia.org/wiki/Thermodynamic_free_energy 7

https://web.stanford.edu/class/cs279/lectures/lecture4.pdf
https://en.wikipedia.org/wiki/Thermodynamic_free_energy

Computation Challenge

∫ " # $ # %#

“What is the mean of this distribution?”

% # = #, -(#) can be complicated and high dimensional

• The central computational task for probabilistic inference:

Calculating Statistics

8

Computation Challenge

∫ " # $ # %#

“What is the probability of
generating this image?”

% # = ?(@AB # , C#D), - # = ?(0, D) # ∼ %(#)
(

• The central computational task for probabilistic inference:

Evaluating the Likelihood

9

Computation Challenge

∫ " # $ # %#

“What is the weather forecast for tomorrow?”

Answering this in a Bayesian way:
#: forecasting simulator settings
.: historical weather record

% # = GH"IJKBLM(#), - # = ' # .)

• The central computational task for probabilistic inference:

Probabilistic Forecasting

10

Nature laughs at the
difficulties of integration.

Gordon and Sorkin. The Armchair Science Reader. New York 1959

-- Pierre-Simon Laplace

Integration in Bayesian Computation

Both)(#) and %(#) are intractable

Approximate Bayesian Computation

The integrand)(#) is intractable

Bayesian Optimization, Probabilistic Numerics
Implicit Models

The probability distribution %(#) is intractable

Approximate Inference

This tutorial
(in a strict sense)∫ " # $ # %#

12

Approximate Inference
• Central task: approximate %(#)

& # ≈ $(#)

13

The probability distribution !(#) is intractable

Approximate Inference

This tutorial
(in a strict sense)

Approximate Inference
• Central task: approximate %(#)

& # ≈ $(#)
Not simpler than computing ∫ % # - # O# for a given integrand %(#)!

∫ % # - # O# = P$ % % # = P& %
$ %
& % % # ≈ ∑'()* S'%(#')

! " ≫ $("), "! ∼ !("), ()! ≔ "#$[&'()!)]
,()!) ,)! = -.!

∑!"#$
% -.!"

• Example: when % # ∝ exp[−0(#)], estimating via self-normalized importance sampling

Solving T # ≈ - # can help computing ∫ % # - # O# for any tractable integrand %(#):

∫ % # - # O# = P$ % % # ≈ P& %
$ %
& % % # ≈ ∑'()* %(#'), #' ∼ T(#)

14

The probability distribution !(#) is intractable

Approximate Inference

This tutorial
(in a strict sense)

Approximate Inference
• Central task: approximate %(#)

& # ≈ $(#)
Approximate distribution design Algorithm for fitting 2 # to %(#)

min YLZZ(T # , -(#))

Optimisation-based
approaches

Sampling/Transport-based
approachesExplicit distributions Distributions with samples but

expensive/intractable density
15

The probability distribution !(#) is intractable

Approximate Inference

This tutorial
(in a strict sense)

Previous Tutorial at NeurIPS 2020

Basics
Probabilistic modelling

Approximate inference

Variational inference

Advances
Scalable variational inference

Monte Carlo techniques

Amortized inference

2 distribution design

Optimization objective design

Applications
Bayesian neural networks

Partially observed VAEs

Future challenges

(NeurIPS 2020 tutorial “Advances in Approximate Inference” by Cheng Zhang and Yingzhen Li) 16

Prompt to Imagen 4
“A sci-fi image of two robots, one standing and doing calculations on
whiteboard and another just sit in front of a computer, the computer screen
shows codes, the whiteboard shows an integration equation ∫ F(z) π(z) dz”

This Tutorial at UAI 2025 (5 Years Later)

Modern Basics
Variational inference

Scaling & Monte Carlo

Amortized inference

Design principles I

New Advances
Score-based approximations

Diffusion-based approximations

Flow-based approximations

Design principles II

Applications
Molecular Dynamics Simulation

Simulation-based Inference

Deep Generative Models

Future challenges

18

Agenda for Today

• Basics
• (Coffee Break (30mins))
• Advances

• Small breaks (e.g., 5mins each) during sessions

19

Variational inference: the basic idea
Goal: Approximate an intractable target density by a simpler family of densities π(z) !

20

Variational inference: the basic idea
Goal: Approximate an intractable target density by a simpler family of densities π(z) !

20

Variational inference: the basic idea
Goal: Approximate an intractable target density by a simpler family of densities π(z) !

Example: Bayesian inference

π(z) = p(z |data) = p(z) p(data |z)
∫ p(z) p(data |z) dz

20

Often can’t be computed in
closed form

Variational inference: the basic idea
Goal: Approximate an intractable target density by a simpler family of densities π(z) !

Example: Bayesian inference

π(z) = p(z |data) = p(z) p(data |z)
∫ p(z) p(data |z) dz

20

Often can’t be computed in
closed form

Variational inference: the basic idea
Goal: Approximate an intractable target density by a simpler family of densities π(z) !

Example: Bayesian inference

π(z) = p(z |data) = p(z) p(data |z)
∫ p(z) p(data |z) dz

Also recall: physics (Boltzmann distribution)

π(z) = exp(−U(z)/(kBT))
∫ exp(−U(z)/(kBT))dz

20

Often can’t be computed in
closed form

Variational inference: the basic idea
Goal: Approximate an intractable target density by a simpler family of densities π(z) !

Example: Bayesian inference

π(z) = p(z |data) = p(z) p(data |z)
∫ p(z) p(data |z) dz

Also recall: physics (Boltzmann distribution)

π(z) = exp(−U(z)/(kBT))
∫ exp(−U(z)/(kBT))dz

20

Often can’t be computed in
closed form

Variational inference: the basic idea
Goal: Approximate an intractable target density by a simpler family of densities π(z) !

Example: Bayesian inference

π(z) = p(z |data) = p(z) p(data |z)
∫ p(z) p(data |z) dz

Also recall: physics (Boltzmann distribution)

π(z) = exp(−U(z)/(kBT))
∫ exp(−U(z)/(kBT))dz

20

Often can’t be computed in
closed form

Variational inference: the basic idea
Goal: Approximate an intractable target density by a simpler family of densities π(z) !

Example: Bayesian inference

π(z) = p(z |data) = p(z) p(data |z)
∫ p(z) p(data |z) dz

Also recall: physics (Boltzmann distribution)

π(z) = exp(−U(z)/(kBT))
∫ exp(−U(z)/(kBT))dz

20

Variational inference: the basic idea

2

Goal: Approximate an intractable target density by a simpler family of densities π(z) !

21

Variational inference: the basic idea

2

Goal: Approximate an intractable target density by a simpler family of densities π(z) !

21

Variational inference: the basic idea

2

Example: Gaussian family with diagonal covariance
(Often called “factorized” or “mean field” Gaussian)

#(μ, Σ)

Goal: Approximate an intractable target density by a simpler family of densities π(z) !

21

Variational inference: the basic idea

2

Example: Gaussian family with diagonal covariance
(Often called “factorized” or “mean field” Gaussian)

#(μ, Σ)

Target distribution π Factorized Gaussian q ∈ !

[Zoltowski et al., 2021]

Goal: Approximate an intractable target density by a simpler family of densities π(z) !

21

Variational inference: the basic idea
Goal: Approximate an intractable target density by a simpler family of densities π(z) !

22

Variational inference: the basic idea
Goal: Approximate an intractable target density by a simpler family of densities π(z) !

22

Variational inference: the basic idea

Step 1: Specify a divergence between variational density and target &(q; π) q(z) π(z)

Goal: Approximate an intractable target density by a simpler family of densities π(z) !

22

Variational inference: the basic idea

Step 1: Specify a divergence between variational density and target &(q; π) q(z) π(z)
Step 2: Find the member of the family that minimizes the divergence, i.e.,!

Goal: Approximate an intractable target density by a simpler family of densities π(z) !

22

Variational inference: the basic idea

Step 1: Specify a divergence between variational density and target &(q; π) q(z) π(z)
Step 2: Find the member of the family that minimizes the divergence, i.e.,!

q* = arg min
q∈!

&(q; π)

Goal: Approximate an intractable target density by a simpler family of densities π(z) !

22

Variational inference: the basic idea

Step 1: Specify a divergence between variational density and target &(q; π) q(z) π(z)
Step 2: Find the member of the family that minimizes the divergence, i.e.,!

q* = arg min
q∈!

&(q; π)

Goal: Approximate an intractable target density by a simpler family of densities π(z) !

22

Target
distribution π

Variational
distribution q*μ*, Σ* = arg min

μ,Σ
&(N(μ, Σ); π)

Example: find the mean
and (diagonal) covariance
such that it is closest to π

Variational inference: the basic idea

Step 1: Specify a divergence between variational density and target &(q; π) q(z) π(z)
Step 2: Find the member of the family that minimizes the divergence, i.e.,!

Goal: Approximate an intractable target density by a simpler family of densities π(z) !

q* = arg min
q∈!

&(q; π)
Target

distribution π
Variational

distribution q*μ*, Σ* = arg min
μ,Σ

&(N(μ, Σ); π)

Example: find the mean
and (diagonal) covariance
such that it is closest to π

23

Variational inference: the basic idea

Step 1: Specify a divergence between variational density and target &(q; π) q(z) π(z)
Step 2: Find the member of the family that minimizes the divergence, i.e.,!

Step 3: Use variational density instead of target in downstream tasks: e.g.,q* π(z)
'π(z)[f(z)] ≈ 'q*(z)[f(z)]

Goal: Approximate an intractable target density by a simpler family of densities π(z) !

q* = arg min
q∈!

&(q; π)
Target

distribution π
Variational

distribution q*μ*, Σ* = arg min
μ,Σ

&(N(μ, Σ); π)

Example: find the mean
and (diagonal) covariance
such that it is closest to π

23

What divergence to use?
Kullback-Leibler (KL) divergence (“forward KL”)

24

&KL(π; q) = ∫ log (π(z)
q(z)) π(z) dz

What divergence to use?
Kullback-Leibler (KL) divergence (“forward KL”) &KL(π; q) ≠ &KL(q; π)

24

&KL(π; q) = ∫ log (π(z)
q(z)) π(z) dz

What divergence to use?
Kullback-Leibler (KL) divergence (“forward KL”) &KL(π; q) ≠ &KL(q; π)

24

 iff &KL(π; q) = 0 π = q&KL(π; q) = ∫ log (π(z)
q(z)) π(z) dz

What divergence to use?
Kullback-Leibler (KL) divergence (“forward KL”) &KL(π; q) ≠ &KL(q; π)

24

 iff &KL(π; q) = 0 π = q&KL(π; q) = ∫ log (π(z)
q(z)) π(z) dz

What divergence to use?
Kullback-Leibler (KL) divergence (“forward KL”)

Problem: we often don’t
know - can’t sample from

it or evaluate it pointwise
π(z)

&KL(π; q) ≠ &KL(q; π)

24

 iff &KL(π; q) = 0 π = q&KL(π; q) = ∫ log (π(z)
q(z)) π(z) dz

What divergence to use?
Kullback-Leibler (KL) divergence (“forward KL”)

Most commonly used in VI: “reverse” KL divergence

Problem: we often don’t
know - can’t sample from

it or evaluate it pointwise
π(z)

&KL(π; q) ≠ &KL(q; π)

24

 iff &KL(π; q) = 0 π = q&KL(π; q) = ∫ log (π(z)
q(z)) π(z) dz

What divergence to use?
Kullback-Leibler (KL) divergence (“forward KL”)

&KL(q; π) = ∫ log (q(z)
π(z)) q(z) dz

Most commonly used in VI: “reverse” KL divergence

Problem: we often don’t
know - can’t sample from

it or evaluate it pointwise
π(z)

&KL(π; q) ≠ &KL(q; π)

24

 iff &KL(π; q) = 0 π = q&KL(π; q) = ∫ log (π(z)
q(z)) π(z) dz

What divergence to use?
Kullback-Leibler (KL) divergence (“forward KL”)

&KL(q; π) = ∫ log (q(z)
π(z)) q(z) dz

Most commonly used in VI: “reverse” KL divergence

Problem: we often don’t
know - can’t sample from

it or evaluate it pointwise
π(z)

But I still can’t evaluate .π(z)

&KL(π; q) ≠ &KL(q; π)

24

 iff &KL(π; q) = 0 π = q&KL(π; q) = ∫ log (π(z)
q(z)) π(z) dz

What divergence to use?
Kullback-Leibler (KL) divergence (“forward KL”)

&KL(q; π) = ∫ log (q(z)
π(z)) q(z) dz

Most commonly used in VI: “reverse” KL divergence

Problem: we often don’t
know - can’t sample from

it or evaluate it pointwise
π(z)

But I still can’t evaluate .π(z)

= ∫ log (q(z)
ρ(z)) q(z) dz + constant

&KL(π; q) ≠ &KL(q; π)

24

 iff &KL(π; q) = 0 π = q&KL(π; q) = ∫ log (π(z)
q(z)) π(z) dz

What divergence to use?
Kullback-Leibler (KL) divergence (“forward KL”)

&KL(q; π) = ∫ log (q(z)
π(z)) q(z) dz

Most commonly used in VI: “reverse” KL divergence

Problem: we often don’t
know - can’t sample from

it or evaluate it pointwise
π(z)

But I still can’t evaluate .π(z)

= ∫ log (q(z)
ρ(z)) q(z) dz + constant

&KL(π; q) ≠ &KL(q; π)

24

 iff &KL(π; q) = 0 π = q&KL(π; q) = ∫ log (π(z)
q(z)) π(z) dz

What divergence to use?
Kullback-Leibler (KL) divergence (“forward KL”)

&KL(q; π) = ∫ log (q(z)
π(z)) q(z) dz

Most commonly used in VI: “reverse” KL divergence

Problem: we often don’t
know - can’t sample from

it or evaluate it pointwise
π(z)

But I still can’t evaluate .π(z)

= ∫ log (q(z)
ρ(z)) q(z) dz + constant

Quantities inside the second integral are tractable: I can evaluate ,
e.g., in Bayesian inference it’s the joint distribution

ρ(z)
ρ(z) = p(z) p(data |z)

&KL(π; q) ≠ &KL(q; π)

24

 iff &KL(π; q) = 0 π = q&KL(π; q) = ∫ log (π(z)
q(z)) π(z) dz

Forward KL vs Reverse KL
Forward KL
&KL(π; q)

Reverse KL
&KL(q; π)

Murphy. Probabilistic Machine Learning. Book 1.
25

Forward KL vs Reverse KL
Forward KL
&KL(π; q)

Reverse KL
&KL(q; π)

Murphy. Probabilistic Machine Learning. Book 1.

Target
density π

25

Forward KL vs Reverse KL
Forward KL
&KL(π; q)

Reverse KL
&KL(q; π)

Murphy. Probabilistic Machine Learning. Book 1.

Target
density π

Variational
density q

25

Forward KL vs Reverse KL
Forward KL
&KL(π; q)

Reverse KL
&KL(q; π)

Murphy. Probabilistic Machine Learning. Book 1.

Target
density π

Variational
density q

25

Here “covers” q π

Forward KL vs Reverse KL
Forward KL
&KL(π; q)

Reverse KL
&KL(q; π)

Murphy. Probabilistic Machine Learning. Book 1.

Target
density π

Variational
density q

25

Here “covers” q π Here latches onto one of the modes of q π

Variational
density q

In practice: Evidence Lower Bound (ELBO)

&KL(q; p) = ∫ log (q(z)
ρ(z)) q(z) dz + constant

The reverse KL divergence is intractable. Recall that we can write it in this tractable form:

26

In practice: Evidence Lower Bound (ELBO)

&KL(q; p) = ∫ log (q(z)
ρ(z)) q(z) dz + constant

The reverse KL divergence is intractable. Recall that we can write it in this tractable form:

Bayes: ρ(z) = p(z) p(data |z)

26

In practice: Evidence Lower Bound (ELBO)

&KL(q; p) = ∫ log (q(z)
ρ(z)) q(z) dz + constant

The reverse KL divergence is intractable. Recall that we can write it in this tractable form:

The evidence lower bound (ELBO) is the negative KL (up to an additive constant):

Bayes: ρ(z) = p(z) p(data |z)

26

In practice: Evidence Lower Bound (ELBO)

ELBO(q) = ∫ log (ρ(z)
q(z)) q(z) dz

&KL(q; p) = ∫ log (q(z)
ρ(z)) q(z) dz + constant

The reverse KL divergence is intractable. Recall that we can write it in this tractable form:

The evidence lower bound (ELBO) is the negative KL (up to an additive constant):

Bayes: ρ(z) = p(z) p(data |z)

26

In practice: Evidence Lower Bound (ELBO)

ELBO(q) = ∫ log (ρ(z)
q(z)) q(z) dz

&KL(q; p) = ∫ log (q(z)
ρ(z)) q(z) dz + constant

The reverse KL divergence is intractable. Recall that we can write it in this tractable form:

The evidence lower bound (ELBO) is the negative KL (up to an additive constant):

In practice, we maximize the ELBO:

Bayes: ρ(z) = p(z) p(data |z)

26

In practice: Evidence Lower Bound (ELBO)

ELBO(q) = ∫ log (ρ(z)
q(z)) q(z) dz

&KL(q; p) = ∫ log (q(z)
ρ(z)) q(z) dz + constant

The reverse KL divergence is intractable. Recall that we can write it in this tractable form:

The evidence lower bound (ELBO) is the negative KL (up to an additive constant):

In practice, we maximize the ELBO:
• max = min w.r.t the parameters of ELBO(q) &KL(q; p) q

Bayes: ρ(z) = p(z) p(data |z)

26

In practice: Evidence Lower Bound (ELBO)

ELBO(q) = ∫ log (ρ(z)
q(z)) q(z) dz

&KL(q; p) = ∫ log (q(z)
ρ(z)) q(z) dz + constant

The reverse KL divergence is intractable. Recall that we can write it in this tractable form:

The evidence lower bound (ELBO) is the negative KL (up to an additive constant):

In practice, we maximize the ELBO:
• max = min w.r.t the parameters of ELBO(q) &KL(q; p) q
• Not a convex objective

Bayes: ρ(z) = p(z) p(data |z)

26

In practice: Evidence Lower Bound (ELBO)

ELBO(q) = ∫ log (ρ(z)
q(z)) q(z) dz

&KL(q; p) = ∫ log (q(z)
ρ(z)) q(z) dz + constant

The reverse KL divergence is intractable. Recall that we can write it in this tractable form:

The evidence lower bound (ELBO) is the negative KL (up to an additive constant):

In practice, we maximize the ELBO:
• max = min w.r.t the parameters of ELBO(q) &KL(q; p) q
• Not a convex objective
• Bayes: it is a lower bound on the marginal likelihood, i.e., ELBO(q) ≤ log p(data)

Bayes: ρ(z) = p(z) p(data |z)

26

In practice: Evidence Lower Bound (ELBO)

ELBO(q) = ∫ log (ρ(z)
q(z)) q(z) dz

&KL(q; p) = ∫ log (q(z)
ρ(z)) q(z) dz + constant

The reverse KL divergence is intractable. Recall that we can write it in this tractable form:

The evidence lower bound (ELBO) is the negative KL (up to an additive constant):

In practice, we maximize the ELBO:
• max = min w.r.t the parameters of ELBO(q) &KL(q; p) q
• Not a convex objective
• Bayes: it is a lower bound on the marginal likelihood, i.e., ELBO(q) ≤ log p(data)

Bayes: ρ(z) = p(z) p(data |z)

= log p(data) − &KL(q(z); p(z |data))

26

In practice: Evidence Lower Bound (ELBO)

ELBO(q) = ∫ log (ρ(z)
q(z)) q(z) dz

&KL(q; p) = ∫ log (q(z)
ρ(z)) q(z) dz + constant

The reverse KL divergence is intractable. Recall that we can write it in this tractable form:

The evidence lower bound (ELBO) is the negative KL (up to an additive constant):

In practice, we maximize the ELBO:
• max = min w.r.t the parameters of ELBO(q) &KL(q; p) q
• Not a convex objective
• Bayes: it is a lower bound on the marginal likelihood, i.e., ELBO(q) ≤ log p(data)

Bayes: ρ(z) = p(z) p(data |z)

= log p(data) − &KL(q(z); p(z |data))

26

Classical VI uses coordinate-ascent to maximize the ELBO
Blei et al. Variational Inference: A Review for Statisticians. Journal of the American Statistician, 2017.

Variational approximations with Gaussians

Murphy. Probabilistic Machine Learning. Book 2.
27

Many other divergences have been considered in VI

9

Some other divergences / distances considered in VI:

• -divergence

• -divergence

• Hellinger distance

• Kernelized Stein discrepancy

• Fisher divergence

α

χ2

28

Long history behind variational inference

1990s 2000s 2010s 2020s

Early work on
approximate

inference, e.g.,
Metropolis-Hastings,
importance sampling

pre-90s

29

Long history behind variational inference

1990s 2000s 2010s 2020s

Jordan, Ghahramani, Jaakkola, Saul. Introduction to variational methods for graphical models. Machine Learning, 1999.

Early work
on VI for
graphical
models

Early work on
approximate

inference, e.g.,
Metropolis-Hastings,
importance sampling

pre-90s

29

Long history behind variational inference

1990s 2000s 2010s 2020s

Jordan, Ghahramani, Jaakkola, Saul. Introduction to variational methods for graphical models. Machine Learning, 1999.

Early work
on VI for
graphical
models

Early work on
approximate

inference, e.g.,
Metropolis-Hastings,
importance sampling

pre-90s

• Coordinate-ascent VI (CAVI)
• Conjugate exponential families
• Widely adopted in probabilistic

models (e.g., LDA, mixtures)

Blei, Ng, Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003.

29

Long history behind variational inference

1990s 2000s 2010s 2020s

Jordan, Ghahramani, Jaakkola, Saul. Introduction to variational methods for graphical models. Machine Learning, 1999.

Early work
on VI for
graphical
models

Early work on
approximate

inference, e.g.,
Metropolis-Hastings,
importance sampling

pre-90s

• Coordinate-ascent VI (CAVI)
• Conjugate exponential families
• Widely adopted in probabilistic

models (e.g., LDA, mixtures)

Blei, Ng, Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003.

• Stochastic optimization and SVI
• “Black-box” VI
• Amortized inference
• Alternative divergences
• More flexible variational families

Hoffman, Blei, Wang, Paisley. Stochastic variational inference. Journal of Machine Learning Research, 2013.
Ranganath, Gerrish, Blei. Black box variational inference. AISTATS, 2014.
Rezende and Mohamed. Variational inference with normalizing flows. ICML, 2016.
Kucukelbir, Tran, Ranganath, Gelman, Blei. Automatic differentiation variational inference. JMLR, 2018.

29

Long history behind variational inference

1990s 2000s 2010s 2020s

Jordan, Ghahramani, Jaakkola, Saul. Introduction to variational methods for graphical models. Machine Learning, 1999.

Early work
on VI for
graphical
models

Early work on
approximate

inference, e.g.,
Metropolis-Hastings,
importance sampling

pre-90s

• Coordinate-ascent VI (CAVI)
• Conjugate exponential families
• Widely adopted in probabilistic

models (e.g., LDA, mixtures)

Blei, Ng, Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003.

• Stochastic optimization and SVI
• “Black-box” VI
• Amortized inference
• Alternative divergences
• More flexible variational families

???

Hoffman, Blei, Wang, Paisley. Stochastic variational inference. Journal of Machine Learning Research, 2013.
Ranganath, Gerrish, Blei. Black box variational inference. AISTATS, 2014.
Rezende and Mohamed. Variational inference with normalizing flows. ICML, 2016.
Kucukelbir, Tran, Ranganath, Gelman, Blei. Automatic differentiation variational inference. JMLR, 2018.

29

Long history behind variational inference

1990s 2000s 2010s 2020s

Jordan, Ghahramani, Jaakkola, Saul. Introduction to variational methods for graphical models. Machine Learning, 1999.

Early work
on VI for
graphical
models

Early work on
approximate

inference, e.g.,
Metropolis-Hastings,
importance sampling

pre-90s

• Coordinate-ascent VI (CAVI)
• Conjugate exponential families
• Widely adopted in probabilistic

models (e.g., LDA, mixtures)

Blei, Ng, Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003.

• Stochastic optimization and SVI
• “Black-box” VI
• Amortized inference
• Alternative divergences
• More flexible variational families

???

Hoffman, Blei, Wang, Paisley. Stochastic variational inference. Journal of Machine Learning Research, 2013.
Ranganath, Gerrish, Blei. Black box variational inference. AISTATS, 2014.
Rezende and Mohamed. Variational inference with normalizing flows. ICML, 2016.
Kucukelbir, Tran, Ranganath, Gelman, Blei. Automatic differentiation variational inference. JMLR, 2018.

29

Elements of “classical” VI:
• Factorized (or “mean field”) assumptions
• Coordinate-ascent and ELBO maximization
• Restrictive assumptions on target (long derivations)

Long history behind variational inference

1990s 2000s 2010s 2020s

Jordan, Ghahramani, Jaakkola, Saul. Introduction to variational methods for graphical models. Machine Learning, 1999.

Early work
on VI for
graphical
models

Early work on
approximate

inference, e.g.,
Metropolis-Hastings,
importance sampling

pre-90s

• Coordinate-ascent VI (CAVI)
• Conjugate exponential families
• Widely adopted in probabilistic

models (e.g., LDA, mixtures)

Blei, Ng, Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003.

• Stochastic optimization and SVI
• “Black-box” VI
• Amortized inference
• Alternative divergences
• More flexible variational families

???

Hoffman, Blei, Wang, Paisley. Stochastic variational inference. Journal of Machine Learning Research, 2013.
Ranganath, Gerrish, Blei. Black box variational inference. AISTATS, 2014.
Rezende and Mohamed. Variational inference with normalizing flows. ICML, 2016.
Kucukelbir, Tran, Ranganath, Gelman, Blei. Automatic differentiation variational inference. JMLR, 2018.

29

Elements of “classical” VI:
• Factorized (or “mean field”) assumptions
• Coordinate-ascent and ELBO maximization
• Restrictive assumptions on target (long derivations)

This tutorial: “modern” variational inference
• “Black box” inference: few assumptions on target
• Automatic differentiation; supported in modern software
• Towards “expressive” variational families
• Alternative divergences

p(z)

Part II: Key components of modern methods

30

Towards black-box approaches for VI
Classical approaches to VI used coordinate-ascent VI (CAVI) updates.
In order to make the problem tractable, typically additional assumptions imposed:
• The variational family is factorized (a “mean field” family)
• Structural assumptions about the target, e.g., “conditionally conjugate”
Challenging for practitioners to apply due to need for specialized derivations.

31

Towards black-box approaches for VI
Classical approaches to VI used coordinate-ascent VI (CAVI) updates.
In order to make the problem tractable, typically additional assumptions imposed:
• The variational family is factorized (a “mean field” family)
• Structural assumptions about the target, e.g., “conditionally conjugate”
Challenging for practitioners to apply due to need for specialized derivations.

“Black-box” VI approaches: very few assumptions needed about the target

• Bayesian modeling: usually just want the joint to be differentiable

• We will see algorithms that use (“the score”)

• Autodiff tools: led to more user-friendly strategies for applying VI
• Implemented in many software packages

p(z, x)
∇zlog p(z |x)

31

Overview of fundamental VI concepts
Variational Bayes: learn an approximation for for data π(z) = p(z |x) x

latent variables z

32

Overview of fundamental VI concepts

Gradient-based variational inference:

Variational Bayes: learn an approximation for for data π(z) = p(z |x) x
latent variables z

32

Overview of fundamental VI concepts

Gradient-based variational inference:

Variational parameters ϕ

Variational Bayes: learn an approximation for for data π(z) = p(z |x) x
latent variables z

32

Overview of fundamental VI concepts

Gradient-based variational inference:

ELBO(ϕ) = ∫ log (pθ(z, x)
qϕ(z)) qϕ(z) dzVariational parameters ϕ

Variational Bayes: learn an approximation for for data π(z) = p(z |x) x
latent variables z

32

Overview of fundamental VI concepts

Gradient-based variational inference:

ELBO(ϕ) = ∫ log (pθ(z, x)
qϕ(z)) qϕ(z) dzVariational parameters ϕ

Variational Bayes: learn an approximation for for data π(z) = p(z |x) x
latent variables z

32

Joint distribution between and z x

Overview of fundamental VI concepts

Gradient-based variational inference:

ELBO(ϕ) = ∫ log (pθ(z, x)
qϕ(z)) qϕ(z) dzVariational parameters ϕ

Will need gradients of the ELBO: ∇ϕELBO(ϕ)

Variational Bayes: learn an approximation for for data π(z) = p(z |x) x
latent variables z

32

Joint distribution between and z x

Overview of fundamental VI concepts

Gradient-based variational inference:

ELBO(ϕ) = ∫ log (pθ(z, x)
qϕ(z)) qϕ(z) dzVariational parameters ϕ

Will need gradients of the ELBO: ∇ϕELBO(ϕ)

Variational Bayes: learn an approximation for for data π(z) = p(z |x) x
latent variables z

What we will cover:

32

Joint distribution between and z x

Overview of fundamental VI concepts

Gradient-based variational inference:

ELBO(ϕ) = ∫ log (pθ(z, x)
qϕ(z)) qϕ(z) dzVariational parameters ϕ

Will need gradients of the ELBO: ∇ϕELBO(ϕ)

Monte Carlo approximations of the gradient

Variational Bayes: learn an approximation for for data π(z) = p(z |x) x
latent variables z

What we will cover:

32

Joint distribution between and z x

Overview of fundamental VI concepts

Gradient-based variational inference:

ELBO(ϕ) = ∫ log (pθ(z, x)
qϕ(z)) qϕ(z) dzVariational parameters ϕ

Will need gradients of the ELBO: ∇ϕELBO(ϕ)

Monte Carlo approximations of the gradient
1) Monte Carlo approximation of via samples ∇ϕELBO(ϕ) z1, …, zB ∼ qϕ

Variational Bayes: learn an approximation for for data π(z) = p(z |x) x
latent variables z

What we will cover:

32

Joint distribution between and z x

Overview of fundamental VI concepts

Gradient-based variational inference:

ELBO(ϕ) = ∫ log (pθ(z, x)
qϕ(z)) qϕ(z) dzVariational parameters ϕ

Will need gradients of the ELBO: ∇ϕELBO(ϕ)

Monte Carlo approximations of the gradient
1) Monte Carlo approximation of via samples ∇ϕELBO(ϕ) z1, …, zB ∼ qϕ

Variational Bayes: learn an approximation for for data π(z) = p(z |x) x
latent variables z

What we will cover:

32

Joint distribution between and z x

Overview of fundamental VI concepts

Gradient-based variational inference:

ELBO(ϕ) = ∫ log (pθ(z, x)
qϕ(z)) qϕ(z) dzVariational parameters ϕ

Will need gradients of the ELBO: ∇ϕELBO(ϕ)

Monte Carlo approximations of the gradient
1) Monte Carlo approximation of via samples ∇ϕELBO(ϕ) z1, …, zB ∼ qϕ
2) Score function gradient estimator

Variational Bayes: learn an approximation for for data π(z) = p(z |x) x
latent variables z

What we will cover:

32

Joint distribution between and z x

Overview of fundamental VI concepts

Gradient-based variational inference:

ELBO(ϕ) = ∫ log (pθ(z, x)
qϕ(z)) qϕ(z) dzVariational parameters ϕ

Will need gradients of the ELBO: ∇ϕELBO(ϕ)

Monte Carlo approximations of the gradient
1) Monte Carlo approximation of via samples ∇ϕELBO(ϕ) z1, …, zB ∼ qϕ
2) Score function gradient estimator
3) Reparameterization gradient estimator

Variational Bayes: learn an approximation for for data π(z) = p(z |x) x
latent variables z

What we will cover:

32

Joint distribution between and z x

Overview of fundamental VI concepts

Gradient-based variational inference:

ELBO(ϕ) = ∫ log (pθ(z, x)
qϕ(z)) qϕ(z) dzVariational parameters ϕ

Will need gradients of the ELBO: ∇ϕELBO(ϕ)

Monte Carlo approximations of the gradient
1) Monte Carlo approximation of via samples ∇ϕELBO(ϕ) z1, …, zB ∼ qϕ
2) Score function gradient estimator
3) Reparameterization gradient estimator

Amortized inference: learn an approximation for for general
(uses ideas from VI + deep generative modeling)

p(z |x) x

Variational Bayes: learn an approximation for for data π(z) = p(z |x) x
latent variables z

What we will cover:

32

Joint distribution between and z x

General strategies for gradient estimation
Consider probabilistic objectives of the form:

Mohamed et al.. Monte Carlo Gradient Estimation in Machine Learning. Journal of Machine Learning Research, 2020.

ℒ(ϕ) := 'qϕ(z)[f(z; ϕ, θ)]

33

General strategies for gradient estimation
Consider probabilistic objectives of the form:

Mohamed et al.. Monte Carlo Gradient Estimation in Machine Learning. Journal of Machine Learning Research, 2020.

ℒ(ϕ) := 'qϕ(z)[f(z; ϕ, θ)] Example: ELBO(ϕ) = 'qϕ(z)[log(pθ(z, x)
qϕ(z))]

33

General strategies for gradient estimation
Consider probabilistic objectives of the form:

Mohamed et al.. Monte Carlo Gradient Estimation in Machine Learning. Journal of Machine Learning Research, 2020.

ℒ(ϕ) := 'qϕ(z)[f(z; ϕ, θ)] Example: ELBO(ϕ) = 'qϕ(z)[log(pθ(z, x)
qϕ(z))]

Other applications: reinforcement learning, experimental design

33

General strategies for gradient estimation
Consider probabilistic objectives of the form:

Mohamed et al.. Monte Carlo Gradient Estimation in Machine Learning. Journal of Machine Learning Research, 2020.

ℒ(ϕ) := 'qϕ(z)[f(z; ϕ, θ)]

Goal: learn the distributional parameters via gradient descent. Need gradients: ϕ
∇ϕ'qϕ(z)[f(z; ϕ, θ)]

Example: ELBO(ϕ) = 'qϕ(z)[log(pθ(z, x)
qϕ(z))]

Other applications: reinforcement learning, experimental design

33

General strategies for gradient estimation
Consider probabilistic objectives of the form:

Mohamed et al.. Monte Carlo Gradient Estimation in Machine Learning. Journal of Machine Learning Research, 2020.

ℒ(ϕ) := 'qϕ(z)[f(z; ϕ, θ)]

Goal: learn the distributional parameters via gradient descent. Need gradients: ϕ
∇ϕ'qϕ(z)[f(z; ϕ, θ)]

Example: ELBO(ϕ) = 'qϕ(z)[log(pθ(z, x)
qϕ(z))]

But: typically this expectation is intractable!

Other applications: reinforcement learning, experimental design

33

General strategies for gradient estimation
Consider probabilistic objectives of the form:

Mohamed et al.. Monte Carlo Gradient Estimation in Machine Learning. Journal of Machine Learning Research, 2020.

ℒ(ϕ) := 'qϕ(z)[f(z; ϕ, θ)]

Goal: learn the distributional parameters via gradient descent. Need gradients: ϕ
∇ϕ'qϕ(z)[f(z; ϕ, θ)]

Example: ELBO(ϕ) = 'qϕ(z)[log(pθ(z, x)
qϕ(z))]

But: typically this expectation is intractable!

Other applications: reinforcement learning, experimental design

Two strategies that appear frequently in approximate inference:
1) Score function gradient estimator
2) Reparameterization gradient estimator

33

General strategies for gradient estimation
Consider probabilistic objectives of the form:

Mohamed et al.. Monte Carlo Gradient Estimation in Machine Learning. Journal of Machine Learning Research, 2020.

ℒ(ϕ) := 'qϕ(z)[f(z; ϕ, θ)]

Goal: learn the distributional parameters via gradient descent. Need gradients: ϕ
∇ϕ'qϕ(z)[f(z; ϕ, θ)]

Example: ELBO(ϕ) = 'qϕ(z)[log(pθ(z, x)
qϕ(z))]

But: typically this expectation is intractable!

Other applications: reinforcement learning, experimental design

Two strategies that appear frequently in approximate inference:
1) Score function gradient estimator
2) Reparameterization gradient estimator

We will also discuss two “black-box” strategies for VI based on these two estimators

33

Monte Carlo estimates
ℒ(ϕ) := 'qϕ(z)[f(z; ϕ, θ)] Example: ELBO(ϕ) = 'qϕ(z)[log(pθ(z, x)

qϕ(z))]

34

Monte Carlo estimates
ℒ(ϕ) := 'qϕ(z)[f(z; ϕ, θ)] Example: ELBO(ϕ) = 'qϕ(z)[log(pθ(z, x)

qϕ(z))]
Monte Carlo estimate: sample zb ∼ qϕ(z)

34

Monte Carlo estimates
ℒ(ϕ) := 'qϕ(z)[f(z; ϕ, θ)] Example: ELBO(ϕ) = 'qϕ(z)[log(pθ(z, x)

qϕ(z))]
ℒ(ϕ) ≈ 1

B ∑B
b=1 f(zb; ϕ, θ)

Monte Carlo estimate: sample zb ∼ qϕ(z)

34

Monte Carlo estimates
ℒ(ϕ) := 'qϕ(z)[f(z; ϕ, θ)] Example: ELBO(ϕ) = 'qϕ(z)[log(pθ(z, x)

qϕ(z))]
ℒ(ϕ) ≈ 1

B ∑B
b=1 f(zb; ϕ, θ)

Monte Carlo estimate: sample zb ∼ qϕ(z)

How to estimate the gradient using Monte Carlo?∇ϕ'qϕ(z)[f(z; ϕ, θ)]

34

Monte Carlo estimates
ℒ(ϕ) := 'qϕ(z)[f(z; ϕ, θ)] Example: ELBO(ϕ) = 'qϕ(z)[log(pθ(z, x)

qϕ(z))]
ℒ(ϕ) ≈ 1

B ∑B
b=1 f(zb; ϕ, θ)

Monte Carlo estimate: sample zb ∼ qϕ(z)

Desirable properties of estimators:
• Unbiased: E[estimator] = true value

• Consistent: recover true value as
• Low variance: if we have two estimators that use the same amount of computation,

we prefer the lower variance once
• Fast computation

B → ∞

How to estimate the gradient using Monte Carlo?∇ϕ'qϕ(z)[f(z; ϕ, θ)]

34

Approach 1: Score function gradients
a.k.a. likelihood ratio method, REINFORCE estimator, “log derivative trick”

35

Approach 1: Score function gradients
a.k.a. likelihood ratio method, REINFORCE estimator, “log derivative trick”

Score function: (a.k.a. “Fisher” score)

∇ϕlog qϕ(z) =
∇ϕqϕ(z)

qϕ(z)

35

Approach 1: Score function gradients
a.k.a. likelihood ratio method, REINFORCE estimator, “log derivative trick”

Score function: (a.k.a. “Fisher” score)

∇ϕlog qϕ(z) =
∇ϕqϕ(z)

qϕ(z)
(Note: NOT the “Stein” score function)∇z log qϕ(z)

35

Approach 1: Score function gradients
a.k.a. likelihood ratio method, REINFORCE estimator, “log derivative trick”

Score function: (a.k.a. “Fisher” score)

∇ϕlog qϕ(z) =
∇ϕqϕ(z)

qϕ(z)
(Note: NOT the “Stein” score function)∇z log qϕ(z)

Gradient of the expectation:

35

Approach 1: Score function gradients
a.k.a. likelihood ratio method, REINFORCE estimator, “log derivative trick”

Score function: (a.k.a. “Fisher” score)

∇ϕlog qϕ(z) =
∇ϕqϕ(z)

qϕ(z)
(Note: NOT the “Stein” score function)∇z log qϕ(z)

∇ϕ'qϕ(z)[f(z)] = ∇ϕ ∫ qϕ(z) f(z)dz
Gradient of the expectation:

35

Approach 1: Score function gradients
a.k.a. likelihood ratio method, REINFORCE estimator, “log derivative trick”

Score function: (a.k.a. “Fisher” score)

∇ϕlog qϕ(z) =
∇ϕqϕ(z)

qϕ(z)
(Note: NOT the “Stein” score function)∇z log qϕ(z)

∇ϕ'qϕ(z)[f(z)] = ∇ϕ ∫ qϕ(z) f(z)dz

Assume you can swap
derivatives and integrals

Gradient of the expectation:

35

= ∫ ∇ϕqϕ(z) f(z)

Approach 1: Score function gradients
a.k.a. likelihood ratio method, REINFORCE estimator, “log derivative trick”

Score function: (a.k.a. “Fisher” score)

∇ϕlog qϕ(z) =
∇ϕqϕ(z)

qϕ(z)
(Note: NOT the “Stein” score function)∇z log qϕ(z)

∇ϕ'qϕ(z)[f(z)] = ∇ϕ ∫ qϕ(z) f(z)dz

Assume you can swap
derivatives and integrals

Gradient of the expectation:

35

= ∫ ∇ϕqϕ(z) f(z)

Approach 1: Score function gradients
a.k.a. likelihood ratio method, REINFORCE estimator, “log derivative trick”

Score function: (a.k.a. “Fisher” score)

∇ϕlog qϕ(z) =
∇ϕqϕ(z)

qϕ(z)
(Note: NOT the “Stein” score function)∇z log qϕ(z)

∇ϕ'qϕ(z)[f(z)] = ∇ϕ ∫ qϕ(z) f(z)dz

Assume you can swap
derivatives and integrals

Gradient of the expectation:

35

= ∫ ∇ϕqϕ(z) f(z)

Approach 1: Score function gradients
a.k.a. likelihood ratio method, REINFORCE estimator, “log derivative trick”

Score function: (a.k.a. “Fisher” score)

∇ϕlog qϕ(z) =
∇ϕqϕ(z)

qϕ(z)
(Note: NOT the “Stein” score function)∇z log qϕ(z)

∇ϕ'qϕ(z)[f(z)] = ∇ϕ ∫ qϕ(z) f(z)dz

Assume you can swap
derivatives and integrals

“Log derivative trick”
∇ϕqϕ(z) = qϕ(z) ∇ϕlog qϕ(z)

Gradient of the expectation:

35

= ∫ qϕ(z) f(z) ∇ϕlog qϕ(z) dz

= ∫ ∇ϕqϕ(z) f(z)

Approach 1: Score function gradients
a.k.a. likelihood ratio method, REINFORCE estimator, “log derivative trick”

Score function: (a.k.a. “Fisher” score)

∇ϕlog qϕ(z) =
∇ϕqϕ(z)

qϕ(z)
(Note: NOT the “Stein” score function)∇z log qϕ(z)

∇ϕ'qϕ(z)[f(z)] = ∇ϕ ∫ qϕ(z) f(z)dz

Assume you can swap
derivatives and integrals

“Log derivative trick”
∇ϕqϕ(z) = qϕ(z) ∇ϕlog qϕ(z)

Gradient of the expectation:

35

= ∫ qϕ(z) f(z) ∇ϕlog qϕ(z) dz

= ∫ ∇ϕqϕ(z) f(z)

Approach 1: Score function gradients
a.k.a. likelihood ratio method, REINFORCE estimator, “log derivative trick”

Score function: (a.k.a. “Fisher” score)

∇ϕlog qϕ(z) =
∇ϕqϕ(z)

qϕ(z)
(Note: NOT the “Stein” score function)∇z log qϕ(z)

∇ϕ'qϕ(z)[f(z)] = ∇ϕ ∫ qϕ(z) f(z)dz

Assume you can swap
derivatives and integrals

“Log derivative trick”
∇ϕqϕ(z) = qϕ(z) ∇ϕlog qϕ(z)

Gradient of the expectation:

35

= ∫ qϕ(z) f(z) ∇ϕlog qϕ(z) dz

= ∫ ∇ϕqϕ(z) f(z)

Approach 1: Score function gradients
a.k.a. likelihood ratio method, REINFORCE estimator, “log derivative trick”

Score function: (a.k.a. “Fisher” score)

∇ϕlog qϕ(z) =
∇ϕqϕ(z)

qϕ(z)
(Note: NOT the “Stein” score function)∇z log qϕ(z)

∇ϕ'qϕ(z)[f(z)] = ∇ϕ ∫ qϕ(z) f(z)dz

Assume you can swap
derivatives and integrals

“Log derivative trick”
∇ϕqϕ(z) = qϕ(z) ∇ϕlog qϕ(z)

Gradient of the expectation:

Sample zb ∼ qϕ(z)

35

= ∫ qϕ(z) f(z) ∇ϕlog qϕ(z) dz

= ∫ ∇ϕqϕ(z) f(z)

Approach 1: Score function gradients
a.k.a. likelihood ratio method, REINFORCE estimator, “log derivative trick”

Score function: (a.k.a. “Fisher” score)

∇ϕlog qϕ(z) =
∇ϕqϕ(z)

qϕ(z)
(Note: NOT the “Stein” score function)∇z log qϕ(z)

∇ϕ'qϕ(z)[f(z)] = ∇ϕ ∫ qϕ(z) f(z)dz

Assume you can swap
derivatives and integrals

“Log derivative trick”
∇ϕqϕ(z) = qϕ(z) ∇ϕlog qϕ(z)

Gradient of the expectation:

≈ 1
B

B

∑
b=1

∇ϕlog qϕ(zb) f(zb)Sample zb ∼ qϕ(z)

35

= ∫ qϕ(z) f(z) ∇ϕlog qϕ(z) dz

= ∫ ∇ϕqϕ(z) f(z)

Approach 1: Score function gradients
a.k.a. likelihood ratio method, REINFORCE estimator, “log derivative trick”

Score function: (a.k.a. “Fisher” score)

∇ϕlog qϕ(z) =
∇ϕqϕ(z)

qϕ(z)
(Note: NOT the “Stein” score function)∇z log qϕ(z)

∇ϕ'qϕ(z)[f(z)] = ∇ϕ ∫ qϕ(z) f(z)dz

Assume you can swap
derivatives and integrals

“Log derivative trick”
∇ϕqϕ(z) = qϕ(z) ∇ϕlog qϕ(z)

Gradient of the expectation:

≈ 1
B

B

∑
b=1

∇ϕlog qϕ(zb) f(zb)Sample zb ∼ qϕ(z)

35

Variance reduction
(“control variate”)

[f(zb) − β]

Approach 2: reparameterization gradient estimator
a.k.a. pathwise gradient estimator

Sampling paths: suppose we can alternatively generate samples as follows:

̂z ∼ qϕ(z; ϕ) ≡ ̂z = g(̂ϵ; ϕ), ̂ϵ ∼ p(ϵ)

36

Approach 2: reparameterization gradient estimator
a.k.a. pathwise gradient estimator

Sampling paths: suppose we can alternatively generate samples as follows:

̂z ∼ qϕ(z; ϕ) ≡ ̂z = g(̂ϵ; ϕ), ̂ϵ ∼ p(ϵ)
deterministic path

36

Approach 2: reparameterization gradient estimator
a.k.a. pathwise gradient estimator

Sampling paths: suppose we can alternatively generate samples as follows:

̂z ∼ qϕ(z; ϕ) ≡ ̂z = g(̂ϵ; ϕ), ̂ϵ ∼ p(ϵ)
deterministic path base distribution that is independent of ϕ

36

Approach 2: reparameterization gradient estimator
a.k.a. pathwise gradient estimator

Sampling paths: suppose we can alternatively generate samples as follows:

̂z ∼ qϕ(z; ϕ) ≡ ̂z = g(̂ϵ; ϕ), ̂ϵ ∼ p(ϵ)

Example: Multivariate Gaussian ,

 base is ; , where

p(z; ϕ) = #(z |μ, Σ)
p(ϵ) = #(0,I) g(ϵ; θ) = μ + Lϵ Σ = LL⊤

deterministic path base distribution that is independent of ϕ

36

Approach 2: reparameterization gradient estimator
a.k.a. pathwise gradient estimator

Sampling paths: suppose we can alternatively generate samples as follows:

̂z ∼ qϕ(z; ϕ) ≡ ̂z = g(̂ϵ; ϕ), ̂ϵ ∼ p(ϵ)

Example: Multivariate Gaussian ,

 base is ; , where

p(z; ϕ) = #(z |μ, Σ)
p(ϵ) = #(0,I) g(ϵ; θ) = μ + Lϵ Σ = LL⊤

deterministic path base distribution that is independent of ϕ

36

“Reparameterization trick”: 'qϕ(z)[f(z)] = 'p(ϵ)[f(g(ϵ; ϕ))]

Approach 2: reparameterization gradient estimator
a.k.a. pathwise gradient estimator

Sampling paths: suppose we can alternatively generate samples as follows:

̂z ∼ qϕ(z; ϕ) ≡ ̂z = g(̂ϵ; ϕ), ̂ϵ ∼ p(ϵ)

Example: Multivariate Gaussian ,

 base is ; , where

p(z; ϕ) = #(z |μ, Σ)
p(ϵ) = #(0,I) g(ϵ; θ) = μ + Lϵ Σ = LL⊤

deterministic path base distribution that is independent of ϕ

∇ϕ'qϕ(z)[f(z; ϕ)]
Application to gradient estimator:

36

“Reparameterization trick”: 'qϕ(z)[f(z)] = 'p(ϵ)[f(g(ϵ; ϕ))]

Approach 2: reparameterization gradient estimator
a.k.a. pathwise gradient estimator

Sampling paths: suppose we can alternatively generate samples as follows:

̂z ∼ qϕ(z; ϕ) ≡ ̂z = g(̂ϵ; ϕ), ̂ϵ ∼ p(ϵ)

Example: Multivariate Gaussian ,

 base is ; , where

p(z; ϕ) = #(z |μ, Σ)
p(ϵ) = #(0,I) g(ϵ; θ) = μ + Lϵ Σ = LL⊤

deterministic path base distribution that is independent of ϕ

∇ϕ'qϕ(z)[f(z; ϕ)] = 'p(ϵ)[∇ϕ f(g(ϵ; ϕ))]
Application to gradient estimator:

36

“Reparameterization trick”: 'qϕ(z)[f(z)] = 'p(ϵ)[f(g(ϵ; ϕ))]

Approach 2: reparameterization gradient estimator
a.k.a. pathwise gradient estimator

Sampling paths: suppose we can alternatively generate samples as follows:

̂z ∼ qϕ(z; ϕ) ≡ ̂z = g(̂ϵ; ϕ), ̂ϵ ∼ p(ϵ)

Example: Multivariate Gaussian ,

 base is ; , where

p(z; ϕ) = #(z |μ, Σ)
p(ϵ) = #(0,I) g(ϵ; θ) = μ + Lϵ Σ = LL⊤

deterministic path base distribution that is independent of ϕ

∇ϕ'qϕ(z)[f(z; ϕ)] = 'p(ϵ)[∇ϕ f(g(ϵ; ϕ))]

Draw samples ̂ϵb ∼ p(ϵ)

Application to gradient estimator:

36

“Reparameterization trick”: 'qϕ(z)[f(z)] = 'p(ϵ)[f(g(ϵ; ϕ))]

Approach 2: reparameterization gradient estimator
a.k.a. pathwise gradient estimator

Sampling paths: suppose we can alternatively generate samples as follows:

̂z ∼ qϕ(z; ϕ) ≡ ̂z = g(̂ϵ; ϕ), ̂ϵ ∼ p(ϵ)

Example: Multivariate Gaussian ,

 base is ; , where

p(z; ϕ) = #(z |μ, Σ)
p(ϵ) = #(0,I) g(ϵ; θ) = μ + Lϵ Σ = LL⊤

deterministic path base distribution that is independent of ϕ

∇ϕ'qϕ(z)[f(z; ϕ)] = 'p(ϵ)[∇ϕ f(g(ϵ; ϕ))]

≈ 1
B ∑B

b=1 ∇ϕ f(g(̂ϵb; ϕ))Draw samples ̂ϵb ∼ p(ϵ)

Application to gradient estimator:

36

“Reparameterization trick”: 'qϕ(z)[f(z)] = 'p(ϵ)[f(g(ϵ; ϕ))]

Comparison of estimators
ϕ ∈ {μ, σ} f(z) = (z − k)2q(z; ϕ) = #(z |μ, σ2)

37

Mohamed et al. Monte Carlo Gradient Estimation in Machine Learning. Journal of Machine Learning Research, 2020.

Comparison of estimators
ϕ ∈ {μ, σ} f(z) = (z − k)2q(z; ϕ) = #(z |μ, σ2)

37

Mohamed et al. Monte Carlo Gradient Estimation in Machine Learning. Journal of Machine Learning Research, 2020.

Score function

Comparison of estimators
ϕ ∈ {μ, σ} f(z) = (z − k)2q(z; ϕ) = #(z |μ, σ2)

37

Mohamed et al. Monte Carlo Gradient Estimation in Machine Learning. Journal of Machine Learning Research, 2020.

Score function

Score + variance reduction

Comparison of estimators
ϕ ∈ {μ, σ} f(z) = (z − k)2q(z; ϕ) = #(z |μ, σ2)

37

Mohamed et al. Monte Carlo Gradient Estimation in Machine Learning. Journal of Machine Learning Research, 2020.

Score function

Score + variance reduction

Reparameterization

Comparison of estimators
ϕ ∈ {μ, σ} f(z) = (z − k)2q(z; ϕ) = #(z |μ, σ2)

Score function: more general; more sensitive to dimensionality; generally higher variance
Reparameterization: needs a differentiable cost function; variance more well behaved

37

Mohamed et al. Monte Carlo Gradient Estimation in Machine Learning. Journal of Machine Learning Research, 2020.

Score function

Score + variance reduction

Reparameterization

Black-box VI
Uses the score function gradient estimator of the ELBO

ϕ ← ϕ + η 1
B

B

∑
b=1

∇ϕlog qϕ(zb) log(p(zb, x)
qϕ(zb))

Sample z1, …, zB ∼ qϕ(z)
Set the step size η

Ranganath, Gerrish, Blei. Black box variational inference. AISTATS, 2014.

Gradient update

38

Black-box VI
Uses the score function gradient estimator of the ELBO

ϕ ← ϕ + η 1
B

B

∑
b=1

∇ϕlog qϕ(zb) log(p(zb, x)
qϕ(zb))

Sample z1, …, zB ∼ qϕ(z)
Set the step size η

Ranganath, Gerrish, Blei. Black box variational inference. AISTATS, 2014.

score function gradient estimator of the ELBO

Gradient update

38

Black-box VI
Uses the score function gradient estimator of the ELBO

ϕ ← ϕ + η 1
B

B

∑
b=1

∇ϕlog qϕ(zb) log(p(zb, x)
qϕ(zb))

Sample z1, …, zB ∼ qϕ(z)
Set the step size η

Ranganath, Gerrish, Blei. Black box variational inference. AISTATS, 2014.

score function gradient estimator of the ELBO

Gradient update

38

“Black box”: few
assumptions are
needed on
• Sample from q
• Evaluate score
• Evaluate joint

p(z, x)

Black-box VI
Uses the score function gradient estimator of the ELBO

ϕ ← ϕ + η 1
B

B

∑
b=1

∇ϕlog qϕ(zb) log(p(zb, x)
qϕ(zb))

Sample z1, …, zB ∼ qϕ(z)
Set the step size η

Ranganath, Gerrish, Blei. Black box variational inference. AISTATS, 2014.

Black-box VI is used with techniques to reduce the variance
of the estimator (Rao-Blackwellization and control variates)

score function gradient estimator of the ELBO

Gradient update

38

“Black box”: few
assumptions are
needed on
• Sample from q
• Evaluate score
• Evaluate joint

p(z, x)

Black-box VI
Uses the score function gradient estimator of the ELBO

ϕ ← ϕ + η 1
B

B

∑
b=1

∇ϕlog qϕ(zb) log(p(zb, x)
qϕ(zb))

Sample z1, …, zB ∼ qϕ(z)
Set the step size η

Ranganath, Gerrish, Blei. Black box variational inference. AISTATS, 2014.

Black-box VI is used with techniques to reduce the variance
of the estimator (Rao-Blackwellization and control variates)

score function gradient estimator of the ELBO

Gradient update

38

“Black box”: few
assumptions are
needed on
• Sample from q
• Evaluate score
• Evaluate joint

p(z, x)

Automatic differentiation VI (ADVI)

Kucukelbir, et al. Automatic differentiation variational inference. Journal of Machine Learning Research, 2018.

Transform target to one on real coordinate space (via change of variables formula)π π̃

39

Automatic differentiation VI (ADVI)

Kucukelbir, et al. Automatic differentiation variational inference. Journal of Machine Learning Research, 2018.

Uses the reparameterization gradient estimator of the ELBO:

Transform target to one on real coordinate space (via change of variables formula)π π̃

39

Automatic differentiation VI (ADVI)

Kucukelbir, et al. Automatic differentiation variational inference. Journal of Machine Learning Research, 2018.

Variational family is a Gaussian with and (diagonal or full-covariance)μ Σ
Uses the reparameterization gradient estimator of the ELBO:

Transform target to one on real coordinate space (via change of variables formula)π π̃

39

Automatic differentiation VI (ADVI)

Kucukelbir, et al. Automatic differentiation variational inference. Journal of Machine Learning Research, 2018.

Variational family is a Gaussian with and (diagonal or full-covariance)μ Σ
Uses the reparameterization gradient estimator of the ELBO:

Base distribution is and e.g., , where p(ϵ) = #(0,I) g(ϵ; θ) = μ + Lϵ LL⊤ = Σ

Transform target to one on real coordinate space (via change of variables formula)π π̃

39

Automatic differentiation VI (ADVI)

Kucukelbir, et al. Automatic differentiation variational inference. Journal of Machine Learning Research, 2018.

Variational family is a Gaussian with and (diagonal or full-covariance)μ Σ
Uses the reparameterization gradient estimator of the ELBO:

Base distribution is and e.g., , where p(ϵ) = #(0,I) g(ϵ; θ) = μ + Lϵ LL⊤ = Σ
Requires that the log joint distribution is differentiable (i.e., score) . ∇ϕlog p(z, x)

Transform target to one on real coordinate space (via change of variables formula)π π̃

39

Comparison of BBVI vs ADVI variance

Kucukelbir, Tran, Ranganath, Gelman, Blei. Automatic differentiation variational inference. Journal of Machine Learning Research, 2018.
40

score function gradient vs reparameterization gradient

Summary: score function vs reparameterization gradients

Score function gradient estimator
• More general: doesn’t need differentiable model
• Applies to continuous and discrete distributions
• High variance: needs to be used with variance reduction techniques

ρ(z) = p(z, x)

Reparameterization gradients
• Requires differentiable models
• Needs to be “reparameterizable”: i.e.,
• Generally controlled variance (less sensitive to dimension)

z = g(̂ϵ, ϕ)

41

Software implementations & other advances

42

Black-box VI and ADVI: Implemented in many software systems

Software implementations & other advances

Probabilistic programming software: e.g., Stan, Pyro, Turing, PyMC

42

Black-box VI and ADVI: Implemented in many software systems

Software implementations & other advances

Probabilistic programming software: e.g., Stan, Pyro, Turing, PyMC

Giordano, et al. Black Box Variational Inference with a Deterministic Objective: Faster, More Accurate, and Even More Black Box. JMLR 2024.

42

Black-box VI and ADVI: Implemented in many software systems

Deterministic ADVI (DADVI): swaps differentiation and sampling; lower-variance,
improved stability; alternative solvers

Software implementations & other advances

Implicit reparameterization: based on implicit differentiation;
• allows reparameterization to be applied to a broader class of distributions,

e.g., beta, gamma, and Dirichlet
• implemented in, e.g., PyTorch, JAX (numpyro, distrax)

Probabilistic programming software: e.g., Stan, Pyro, Turing, PyMC

Giordano, et al. Black Box Variational Inference with a Deterministic Objective: Faster, More Accurate, and Even More Black Box. JMLR 2024.

42

Black-box VI and ADVI: Implemented in many software systems

Deterministic ADVI (DADVI): swaps differentiation and sampling; lower-variance,
improved stability; alternative solvers

Figurnov et al. Implicit reparameterization gradients. NeurIPS 2018.

Software implementations & other advances

Implicit reparameterization: based on implicit differentiation;
• allows reparameterization to be applied to a broader class of distributions,

e.g., beta, gamma, and Dirichlet
• implemented in, e.g., PyTorch, JAX (numpyro, distrax)

Probabilistic programming software: e.g., Stan, Pyro, Turing, PyMC

Scaling to large datasets: can subsample data to speed up VI, e.g.,
N

∑
n=1

log p(xn |z) ≈ N
M ∑

m∈ℳ
log p(xm |z)

Giordano, et al. Black Box Variational Inference with a Deterministic Objective: Faster, More Accurate, and Even More Black Box. JMLR 2024.

42

Black-box VI and ADVI: Implemented in many software systems

Deterministic ADVI (DADVI): swaps differentiation and sampling; lower-variance,
improved stability; alternative solvers

Figurnov et al. Implicit reparameterization gradients. NeurIPS 2018.

Software implementations & other advances

Implicit reparameterization: based on implicit differentiation;
• allows reparameterization to be applied to a broader class of distributions,

e.g., beta, gamma, and Dirichlet
• implemented in, e.g., PyTorch, JAX (numpyro, distrax)

Probabilistic programming software: e.g., Stan, Pyro, Turing, PyMC

A different approach:
amortization

Scaling to large datasets: can subsample data to speed up VI, e.g.,
N

∑
n=1

log p(xn |z) ≈ N
M ∑

m∈ℳ
log p(xm |z)

Giordano, et al. Black Box Variational Inference with a Deterministic Objective: Faster, More Accurate, and Even More Black Box. JMLR 2024.

42

Black-box VI and ADVI: Implemented in many software systems

Deterministic ADVI (DADVI): swaps differentiation and sampling; lower-variance,
improved stability; alternative solvers

Figurnov et al. Implicit reparameterization gradients. NeurIPS 2018.

Amortized inference

43

Amortized inference
Bayesian inference Fitting a probabilistic model for specific input

• Need to re-do inference every time we see a new data set (expensive)
• Typically relies on knowing the likelihood

p(z |x) x
x

43

Amortized inference

Amortized inference: draws from training/test ideas in ML but for the posterior

Bayesian inference Fitting a probabilistic model for specific input
• Need to re-do inference every time we see a new data set (expensive)
• Typically relies on knowing the likelihood

p(z |x) x
x

43

Amortized inference

Amortized inference: draws from training/test ideas in ML but for the posterior

Bayesian inference Fitting a probabilistic model for specific input
• Need to re-do inference every time we see a new data set (expensive)
• Typically relies on knowing the likelihood

p(z |x) x
x

Data x

output

Training: lots of computation Test time: fast prediction

43

Amortized inference

Amortized inference: draws from training/test ideas in ML but for the posterior

Learn probabilistic model
for general input (slow)

p(z |x)
x

Bayesian inference Fitting a probabilistic model for specific input
• Need to re-do inference every time we see a new data set (expensive)
• Typically relies on knowing the likelihood

p(z |x) x
x

Data x

output

Training: lots of computation Test time: fast prediction

43

Amortized inference

Amortized inference: draws from training/test ideas in ML but for the posterior

Learn probabilistic model
for general input (slow)

p(z |x)
x

Bayesian inference Fitting a probabilistic model for specific input
• Need to re-do inference every time we see a new data set (expensive)
• Typically relies on knowing the likelihood

p(z |x) x
x

Given new , output
 (fast)
x′

p(z |x′)

Data x

output

Training: lots of computation Test time: fast prediction

43

Amortized inference

Amortized inference: draws from training/test ideas in ML but for the posterior

Learn probabilistic model
for general input (slow)

p(z |x)
x

Bayesian inference Fitting a probabilistic model for specific input
• Need to re-do inference every time we see a new data set (expensive)
• Typically relies on knowing the likelihood

p(z |x) x
x

Given new , output
 (fast)
x′

p(z |x′)
Applications:
• Generative modeling (e.g., variational autoencoders, normalizing flows)
• Simulation-based inference (e.g., neural posterior estimation)
• Bayesian optimization (e.g., hyperparameter inference)
• Meta-learning (e.g., neural processes)

Data x

output

Training: lots of computation Test time: fast prediction

43

Example 1: variational autoencoders (VAEs)

Key ideas in VAEs:
1. Use the ELBO to approximate (lower bound) the log likelihood function
2. Amortized inference is used to approximate the posterior
3. Reparameterization trick used for training

Kingma and Welling. Auto-encoding variational Bayes. ICLR 2014.
Rezende, Mohamed, Wierstra. Stochastic back propagation and approximate inference in deep generative models. ICML 2014.

44

Deep generative model and approximation
Consider a deep generative model, e.g.,

45

Deep generative model and approximation

 zn ∼ #(0,I)
xn |zn ∼ #(gμ(zn; θ), gΣ(zn; θ))

Latent variable

Observation

Consider a deep generative model, e.g.,

45

Deep generative model and approximation

 zn ∼ #(0,I)
xn |zn ∼ #(gμ(zn; θ), gΣ(zn; θ))

Latent variable

Observation “Decoder”

Consider a deep generative model, e.g.,

45

Deep generative model and approximation

Output of a neural network with parameters θ

 zn ∼ #(0,I)
xn |zn ∼ #(gμ(zn; θ), gΣ(zn; θ))

Latent variable

Observation “Decoder”

Consider a deep generative model, e.g.,

45

Deep generative model and approximation

Output of a neural network with parameters θ

 zn ∼ #(0,I)
xn |zn ∼ #(gμ(zn; θ), gΣ(zn; θ))

Latent variable

Observation “Decoder”

Consider a deep generative model, e.g.,

Maximum likelihood of is intractable! pθ(x) = ∫ pθ(x, z) dz

45

Deep generative model and approximation

Output of a neural network with parameters θ

 zn ∼ #(0,I)
xn |zn ∼ #(gμ(zn; θ), gΣ(zn; θ))

Latent variable

Observation “Decoder”

Consider a deep generative model, e.g.,

Maximum likelihood of is intractable! pθ(x) = ∫ pθ(x, z) dz

Instead, use approximate inference: qϕ(z |x) ≈ pθ(z |x)

45

qϕ(z |x) = #(Ωμ(x; ϕ); ΩΣ(x; ϕ))
In VAEs, common to use a Gaussian, e.g.:

Deep generative model and approximation

Output of a neural network with parameters θ

 zn ∼ #(0,I)
xn |zn ∼ #(gμ(zn; θ), gΣ(zn; θ))

Latent variable

Observation “Decoder”

Consider a deep generative model, e.g.,

Maximum likelihood of is intractable! pθ(x) = ∫ pθ(x, z) dz

Instead, use approximate inference: qϕ(z |x) ≈ pθ(z |x)

45

qϕ(z |x) = #(Ωμ(x; ϕ); ΩΣ(x; ϕ))
In VAEs, common to use a Gaussian, e.g.:

Deep generative model and approximation

Output of a neural network with parameters θ

 zn ∼ #(0,I)
xn |zn ∼ #(gμ(zn; θ), gΣ(zn; θ))

Latent variable

Observation

“Encoder” or “Inference network”

“Decoder”

Consider a deep generative model, e.g.,

Maximum likelihood of is intractable! pθ(x) = ∫ pθ(x, z) dz

Instead, use approximate inference: qϕ(z |x) ≈ pθ(z |x)

45

qϕ(z |x) = #(Ωμ(x; ϕ); ΩΣ(x; ϕ))
In VAEs, common to use a Gaussian, e.g.:

Deep generative model and approximation

Output of a neural network with parameters θ

 zn ∼ #(0,I)
xn |zn ∼ #(gμ(zn; θ), gΣ(zn; θ))

Latent variable

Observation

“Encoder” or “Inference network”

“Decoder”

Consider a deep generative model, e.g.,

Maximum likelihood of is intractable! pθ(x) = ∫ pθ(x, z) dz

Instead, use approximate inference: qϕ(z |x) ≈ pθ(z |x)

Classical VI: local latent variables for each data point xn

45

qϕ(z |x) = #(Ωμ(x; ϕ); ΩΣ(x; ϕ))
In VAEs, common to use a Gaussian, e.g.:

Deep generative model and approximation

Output of a neural network with parameters θ

 zn ∼ #(0,I)
xn |zn ∼ #(gμ(zn; θ), gΣ(zn; θ))

Latent variable

Observation

“Encoder” or “Inference network”

“Decoder”

Consider a deep generative model, e.g.,

Maximum likelihood of is intractable! pθ(x) = ∫ pθ(x, z) dz

Instead, use approximate inference: qϕ(z |x) ≈ pθ(z |x)

Amortization: shared parameter across all data pointsϕ
Classical VI: local latent variables for each data point xn

45

ELBO as a lower bound on the likelihood

Write the ELBO as a function of the model parameters & variational parameters :θ ϕ
Recall that we will use approximate inference: qϕ(z |x) ≈ pθ(z |x)

ELBO(θ, ϕ) = 'qϕ(z|x) log [pθ(x, z)
qϕ(z |x)]

46

ELBO as a lower bound on the likelihood

Write the ELBO as a function of the model parameters & variational parameters :θ ϕ
Recall that we will use approximate inference: qϕ(z |x) ≈ pθ(z |x)

ELBO(θ, ϕ) = 'qϕ(z|x) log [pθ(x, z)
qϕ(z |x)]

= log pθ(x) − &KL(qϕ(z |x); pθ(z |x))

46

ELBO as a lower bound on the likelihood

Write the ELBO as a function of the model parameters & variational parameters :θ ϕ
Recall that we will use approximate inference: qϕ(z |x) ≈ pθ(z |x)

ELBO(θ, ϕ) = 'qϕ(z|x) log [pθ(x, z)
qϕ(z |x)]

= log pθ(x) − &KL(qϕ(z |x); pθ(z |x))
≤ log pθ(x)

46

ELBO as a lower bound on the likelihood

Write the ELBO as a function of the model parameters & variational parameters :θ ϕ
Recall that we will use approximate inference: qϕ(z |x) ≈ pθ(z |x)

ELBO(θ, ϕ) = 'qϕ(z|x) log [pθ(x, z)
qϕ(z |x)]

= log pθ(x) − &KL(qϕ(z |x); pθ(z |x))
≤ log pθ(x)

Thus, maximizing ELBO w.r.t. will simultaneously:
• maximize the marginal likelihood of

• minimize the KL divergence between and

θ, ϕ
pθ(x)

qϕ pθ

46

Gradient of the ELBO: reparameterization trick

ELBO(θ, ϕ) = 'qϕ(z|x)[log[pθ(x, z)
qϕ(z |x)]]

47

Gradient of the ELBO: reparameterization trick

ELBO(θ, ϕ) = 'qϕ(z|x)[log[pθ(x, z)
qϕ(z |x)]]

= 'p(ϵ)[log[pθ(x, z)
qϕ(z |x)]], z = g(ϵ, ϕ, x)

47

Gradient of the ELBO: reparameterization trick

ELBO(θ, ϕ) = 'qϕ(z|x)[log[pθ(x, z)
qϕ(z |x)]]

= 'p(ϵ)[log[pθ(x, z)
qϕ(z |x)]], z = g(ϵ, ϕ, x)

Recall for a Gaussian

#(μ, Σ)
z = μ + Lϵ, Σ = LL⊤

p(ϵ) = #(0,I)

47

Gradient of the ELBO: reparameterization trick

ELBO(θ, ϕ) = 'qϕ(z|x)[log[pθ(x, z)
qϕ(z |x)]]

= 'p(ϵ)[log[pθ(x, z)
qϕ(z |x)]], z = g(ϵ, ϕ, x)

Form Monte Carlo estimator of the ELBO :

̂ℒθ,ϕ(x; ϵ)
̂ϵ ∼ p(ϵ)

z = g(̂ϵ, ϕ, x)̂ℒθ,ϕ(x; ̂ϵ) = log pθ(x, z) − log qϕ(z |x)

Recall for a Gaussian

#(μ, Σ)
z = μ + Lϵ, Σ = LL⊤

p(ϵ) = #(0,I)

47

Gradient of the ELBO: reparameterization trick

ELBO(θ, ϕ) = 'qϕ(z|x)[log[pθ(x, z)
qϕ(z |x)]]

= 'p(ϵ)[log[pθ(x, z)
qϕ(z |x)]], z = g(ϵ, ϕ, x)

Form Monte Carlo estimator of the ELBO :

̂ℒθ,ϕ(x; ϵ)
̂ϵ ∼ p(ϵ)

z = g(̂ϵ, ϕ, x)̂ℒθ,ϕ(x; ̂ϵ) = log pθ(x, z) − log qϕ(z |x)

Recall for a Gaussian

#(μ, Σ)
z = μ + Lϵ, Σ = LL⊤

p(ϵ) = #(0,I)

∇θ,ϕELBO(θ, ϕ) = 'p(ϵ)[∇θ,ϕ ̂ℒθ,ϕ(x; ϵ)]
Gradient of the ELBO:

47

Applications of VAEs

Rezende et al. Stochastic back propagation and approximate inference in deep generative models. ICML 2014.
Kingma and Welling. Introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 2019.

Chemical design: Image resynthesis: Generating MNIST digits:

48

Example 2: Neural posterior estimation (NPE)
Goal: to compute the posterior with a test observation , i.e., xobs p(z |xobs)

Papamakarios and Murray. Fast ϵ-free inference of simulation models with Bayesian conditional density estimation, 2018.
Greenberg, Nonnenmacher, and Macke. Automatic posterior transformation for likelihood-free inference, 2019

49

Example 2: Neural posterior estimation (NPE)
Goal: to compute the posterior with a test observation , i.e., xobs p(z |xobs)
But… we do not have access to the likelihood. We can’t evaluate p(x |z)

Papamakarios and Murray. Fast ϵ-free inference of simulation models with Bayesian conditional density estimation, 2018.
Greenberg, Nonnenmacher, and Macke. Automatic posterior transformation for likelihood-free inference, 2019

49

Example 2: Neural posterior estimation (NPE)
Goal: to compute the posterior with a test observation , i.e., xobs p(z |xobs)
But… we do not have access to the likelihood. We can’t evaluate p(x |z)

Examples: expensive (differential equation); intractable (e.g. integral)

Papamakarios and Murray. Fast ϵ-free inference of simulation models with Bayesian conditional density estimation, 2018.
Greenberg, Nonnenmacher, and Macke. Automatic posterior transformation for likelihood-free inference, 2019

49

Example 2: Neural posterior estimation (NPE)
Goal: to compute the posterior with a test observation , i.e., xobs p(z |xobs)
But… we do not have access to the likelihood. We can’t evaluate p(x |z)

Suppose we can generate samples from p(x |z)

Examples: expensive (differential equation); intractable (e.g. integral)

Papamakarios and Murray. Fast ϵ-free inference of simulation models with Bayesian conditional density estimation, 2018.
Greenberg, Nonnenmacher, and Macke. Automatic posterior transformation for likelihood-free inference, 2019

49

Example 2: Neural posterior estimation (NPE)
Goal: to compute the posterior with a test observation , i.e., xobs p(z |xobs)
But… we do not have access to the likelihood. We can’t evaluate p(x |z)

Suppose we can generate samples from p(x |z)

Examples: expensive (differential equation); intractable (e.g. integral)

In NPE, perform simulation-based inference: qϕ(z |xobs) ≈ p(z |xobs)

Papamakarios and Murray. Fast ϵ-free inference of simulation models with Bayesian conditional density estimation, 2018.
Greenberg, Nonnenmacher, and Macke. Automatic posterior transformation for likelihood-free inference, 2019

49

Example 2: Neural posterior estimation (NPE)
Goal: to compute the posterior with a test observation , i.e., xobs p(z |xobs)
But… we do not have access to the likelihood. We can’t evaluate p(x |z)

Suppose we can generate samples from p(x |z)

Examples: expensive (differential equation); intractable (e.g. integral)

In NPE, perform simulation-based inference: qϕ(z |xobs) ≈ p(z |xobs)
Use amortization so that we can learn a for general qϕ(z |x) x

Papamakarios and Murray. Fast ϵ-free inference of simulation models with Bayesian conditional density estimation, 2018.
Greenberg, Nonnenmacher, and Macke. Automatic posterior transformation for likelihood-free inference, 2019

49

Example 2: Neural posterior estimation (NPE)
Goal: to compute the posterior with a test observation , i.e., xobs p(z |xobs)

Key ideas in NPE:
1. Amortized inference is used to approximate the posterior
2. Simulate pairs of the parameter and data
3. Minimize the expected forward KL via Monte Carlo

But… we do not have access to the likelihood. We can’t evaluate p(x |z)

Suppose we can generate samples from p(x |z)

Examples: expensive (differential equation); intractable (e.g. integral)

In NPE, perform simulation-based inference: qϕ(z |xobs) ≈ p(z |xobs)
Use amortization so that we can learn a for general qϕ(z |x) x

Papamakarios and Murray. Fast ϵ-free inference of simulation models with Bayesian conditional density estimation, 2018.
Greenberg, Nonnenmacher, and Macke. Automatic posterior transformation for likelihood-free inference, 2019

49

NPE setup
Posterior: p(z |x) ∝ p(z) p(x |z)

50

NPE setup

Prior
Posterior: p(z |x) ∝ p(z) p(x |z)

50

NPE setup

Prior
Posterior: p(z |x) ∝ p(z) p(x |z)

Simulator - can only generate samples (no likelihood)

50

NPE setup

Prior
Posterior: p(z |x) ∝ p(z) p(x |z)

Simulator - can only generate samples (no likelihood)

Chose a flexible model , where represents parameters of a neural networkqϕ(z |x) ϕ

50

NPE setup

Prior
Posterior: p(z |x) ∝ p(z) p(x |z)

Simulator - can only generate samples (no likelihood)

Chose a flexible model , where represents parameters of a neural networkqϕ(z |x) ϕ
Examples: Gaussian, mixture of Gaussians, normalizing flow

qϕ(z |x) =
K

∑
k=1

Ωwk
(x; ϕ) #(z |Ωμk

(x; ϕ), ΩΣk
(x; ϕ))

50

NPE setup

Prior

Want to minimize the expected forward KL divergence over data sets:

ℒ(ϕ) = ∫ &KL(p(z |x); qϕ(z; x)) p(x) dx

Posterior: p(z |x) ∝ p(z) p(x |z)
Simulator - can only generate samples (no likelihood)

Chose a flexible model , where represents parameters of a neural networkqϕ(z |x) ϕ
Examples: Gaussian, mixture of Gaussians, normalizing flow

qϕ(z |x) =
K

∑
k=1

Ωwk
(x; ϕ) #(z |Ωμk

(x; ϕ), ΩΣk
(x; ϕ))

50

NPE setup

Prior

Want to minimize the expected forward KL divergence over data sets:

ℒ(ϕ) = ∫ &KL(p(z |x); qϕ(z; x)) p(x) dx

Question: Why forward KL and not reverse KL? Problem: We can’t evaluate p(z, x)

Posterior: p(z |x) ∝ p(z) p(x |z)
Simulator - can only generate samples (no likelihood)

Chose a flexible model , where represents parameters of a neural networkqϕ(z |x) ϕ
Examples: Gaussian, mixture of Gaussians, normalizing flow

qϕ(z |x) =
K

∑
k=1

Ωwk
(x; ϕ) #(z |Ωμk

(x; ϕ), ΩΣk
(x; ϕ))

50

Deriving the neural posterior estimation objective

ℒ(φ) = ∫ &KL(p(z |x); qφ(z; x)) p(x)dx

Goal: to compute the posterior with a test observation , i.e., xobs p(z |xobs)

51

Deriving the neural posterior estimation objective

ℒ(φ) = ∫ &KL(p(z |x); qφ(z; x)) p(x)dx

Goal: to compute the posterior with a test observation , i.e., xobs p(z |xobs)

= ∫ [∫ log(p(z |x)
qφ(z; x)))p(z |x)dz]p(x)dx

51

= ∫ ∫ log (p(z |x)
qφ(z; x))) p(z, x) dz dx

Deriving the neural posterior estimation objective

ℒ(φ) = ∫ &KL(p(z |x); qφ(z; x)) p(x)dx

Goal: to compute the posterior with a test observation , i.e., xobs p(z |xobs)

= ∫ [∫ log(p(z |x)
qφ(z; x)))p(z |x)dz]p(x)dx

51

= ∫ ∫ log (p(z |x)
qφ(z; x))) p(z, x) dz dx

Deriving the neural posterior estimation objective

ℒ(φ) = ∫ &KL(p(z |x); qφ(z; x)) p(x)dx

Goal: to compute the posterior with a test observation , i.e., xobs p(z |xobs)

= ∫ [∫ log(p(z |x)
qφ(z; x)))p(z |x)dz]p(x)dx

51

= ∫ ∫ log (p(z |x)
qφ(z; x))) p(z, x) dz dx

Deriving the neural posterior estimation objective

ℒ(φ) = ∫ &KL(p(z |x); qφ(z; x)) p(x)dx

Goal: to compute the posterior with a test observation , i.e., xobs p(z |xobs)

Approximate with
Monte Carlo samples!

= ∫ [∫ log(p(z |x)
qφ(z; x)))p(z |x)dz]p(x)dx

51

= ∫ ∫ log (p(z |x)
qφ(z; x))) p(z, x) dz dx

Deriving the neural posterior estimation objective

ℒ(φ) = ∫ &KL(p(z |x); qφ(z; x)) p(x)dx

Goal: to compute the posterior with a test observation , i.e., xobs p(z |xobs)

Approximate with
Monte Carlo samples!

= ∫ [∫ log(p(z |x)
qφ(z; x)))p(z |x)dz]p(x)dx

51

Draw zb ∼ p(z)
xb ∼ p(x |z)

= ∫ ∫ log (p(z |x)
qφ(z; x))) p(z, x) dz dx

Deriving the neural posterior estimation objective

ℒ(φ) = ∫ &KL(p(z |x); qφ(z; x)) p(x)dx

Goal: to compute the posterior with a test observation , i.e., xobs p(z |xobs)

Approximate with
Monte Carlo samples!

= ∫ [∫ log(p(z |x)
qφ(z; x)))p(z |x)dz]p(x)dx

̂ℒ (φ) = − 1
B

B

∑
b=1

log qφ(zb; xb)

51

Draw zb ∼ p(z)
xb ∼ p(x |z)

Full NPE algorithm

φ* = arg min
φ

− 1
B

B

∑
b=1

log qφ(zb; xb)

For

 Draw

b = 1,…, B
zb, xb ∼ p(z, x)

Train model to minimize the expected forward KL on the parameter-data pairs:

Output: p(z |xobs) ≈ qφ*(z; xobs)

Input: prior and simulator , conditional density estimator p(z, x) qφ

Often used in a sequential manner, known as sequential NPE (SNPE), where
the prior is replaced by a changing proposal distribution.

52

Applications of NPE+
Bayesian linear regression

Papamakarios and Murray. Fast ϵ-free inference of simulation models with Bayesian conditional density estimation, 2018.
Wagner-Carena et al. From Images to Dark Matter: End-To-End Inference of Substructure From Hundreds of Strong Gravitational Lenses, 2023.
Dingledein et al. Amortized template matching of molecular conformations from cryoelectron microscopy images using simulation-based inference, 2025. 53

Astrophysics

Biophysics

Design principles I
Recall the basics of VI:

Step 1: Specify a divergence between variational density and target &(q; π) q(z) π(z)
Step 2: Find the member of the family that minimizes the divergence, i.e.,!

Step 3: Use variational density instead of target in downstream tasks: e.g.,q* π(z)
q* = arg min

q∈!
&(q; π)

'π(z)[f(z)] ≈ 'q*(z)[f(z)]

54

Design principles I
Recall the basics of VI:

Step 1: Specify a divergence between variational density and target &(q; π) q(z) π(z)
Step 2: Find the member of the family that minimizes the divergence, i.e.,!

Step 3: Use variational density instead of target in downstream tasks: e.g.,q* π(z)
q* = arg min

q∈!
&(q; π)

'π(z)[f(z)] ≈ 'q*(z)[f(z)]

54

Design principles I
Recall the basics of VI:

Step 1: Specify a divergence between variational density and target &(q; π) q(z) π(z)
Step 2: Find the member of the family that minimizes the divergence, i.e.,!

Step 3: Use variational density instead of target in downstream tasks: e.g.,q* π(z)
q* = arg min

q∈!
&(q; π)

'π(z)[f(z)] ≈ 'q*(z)[f(z)]

Expressivity

• correlations
• skew and kurtosis
• multi-modality

54

Design principles I
Recall the basics of VI:

Step 1: Specify a divergence between variational density and target &(q; π) q(z) π(z)
Step 2: Find the member of the family that minimizes the divergence, i.e.,!

Step 3: Use variational density instead of target in downstream tasks: e.g.,q* π(z)
q* = arg min

q∈!
&(q; π)

'π(z)[f(z)] ≈ 'q*(z)[f(z)]

Expressivity

• correlations
• skew and kurtosis
• multi-modality

Tractability

• Easy and fast to evaluate
• Fast sampling from its distribution

(e.g., to approximate expectations)
• Ease of optimization

q(z)

54

Example of design principles
Expressivity

• correlations
• skew and kurtosis
• multi-modality

Tractability
• Easy and fast to evaluate
• Efficient sampling from its

distribution (e.g., to approximate
expectations)

• Ease of optimization

q(z)

55

Example of design principles
Expressivity

• correlations
• skew and kurtosis
• multi-modality

Tractability
• Easy and fast to evaluate
• Efficient sampling from its

distribution (e.g., to approximate
expectations)

• Ease of optimization

q(z)

Target distribution

55

Example of design principles
Expressivity

• correlations
• skew and kurtosis
• multi-modality

Tractability
• Easy and fast to evaluate
• Efficient sampling from its

distribution (e.g., to approximate
expectations)

• Ease of optimization

q(z)

Target distribution Factorized Gaussian

55

Example of design principles
Expressivity

• correlations
• skew and kurtosis
• multi-modality

Tractability
• Easy and fast to evaluate
• Efficient sampling from its

distribution (e.g., to approximate
expectations)

• Ease of optimization

q(z)

Target distribution Factorized Gaussian Energy-based model

q(z) = 1
Zϕ

e−Eϕ(z)
55

Part III: Advances
Score matching, flow matching, and diffusion

56

Black-box inference, variational inference, and misspecification

57

Black-box inference, variational inference, and misspecification
Black-box inference: no model-specific derivations, general targets, accessible to scientists

57

Black-box inference, variational inference, and misspecification
Black-box inference: no model-specific derivations, general targets, accessible to scientists

Variational inference (VI): casts the inference problem as an optimization problem: find the
member of a simpler family that is closest to the target distribution

57

Black-box inference, variational inference, and misspecification
Black-box inference: no model-specific derivations, general targets, accessible to scientists

Variational inference (VI): casts the inference problem as an optimization problem: find the
member of a simpler family that is closest to the target distribution

57

Black-box inference, variational inference, and misspecification
Black-box inference: no model-specific derivations, general targets, accessible to scientists

Variational inference (VI): casts the inference problem as an optimization problem: find the
member of a simpler family that is closest to the target distribution

Expressivity

• correlations
• skew and kurtosis
• multi-modality

57

Black-box inference, variational inference, and misspecification
Black-box inference: no model-specific derivations, general targets, accessible to scientists

Variational inference (VI): casts the inference problem as an optimization problem: find the
member of a simpler family that is closest to the target distribution

Expressivity

• correlations
• skew and kurtosis
• multi-modality

Tractability

• Easy to evaluate
• Can sample from its distribution

(e.g., to approximate expectations)
• Ease of optimization

q(z)

57

Black-box inference, variational inference, and misspecification
Black-box inference: no model-specific derivations, general targets, accessible to scientists

Most common in VI: factorized (mean-field) Gaussian — not so expressive but very tractable

Variational inference (VI): casts the inference problem as an optimization problem: find the
member of a simpler family that is closest to the target distribution

Expressivity

• correlations
• skew and kurtosis
• multi-modality

Tractability

• Easy to evaluate
• Can sample from its distribution

(e.g., to approximate expectations)
• Ease of optimization

q(z)

57

Black-box inference, variational inference, and misspecification
Black-box inference: no model-specific derivations, general targets, accessible to scientists

Most common in VI: factorized (mean-field) Gaussian — not so expressive but very tractable

Variational inference (VI): casts the inference problem as an optimization problem: find the
member of a simpler family that is closest to the target distribution

Expressivity

• correlations
• skew and kurtosis
• multi-modality

Tractability

• Easy to evaluate
• Can sample from its distribution

(e.g., to approximate expectations)
• Ease of optimization

q(z)

Many successes with this family for BBVI via stochastic gradient methods

57

Challenges of black-box variational inference
More expressive families face challenges in optimization: can have very slow
convergence due to noisy gradients, sensitivity to learning rates, batch sizes, etc.

58
Cai et al. Batch and match: black-box variational inference with a score-based divergence. ICML 2024.

Challenges of black-box variational inference
More expressive families face challenges in optimization: can have very slow
convergence due to noisy gradients, sensitivity to learning rates, batch sizes, etc.

Happens even in Gaussian (with full covariance)!

58
Cai et al. Batch and match: black-box variational inference with a score-based divergence. ICML 2024.

Challenges of black-box variational inference
More expressive families face challenges in optimization: can have very slow
convergence due to noisy gradients, sensitivity to learning rates, batch sizes, etc.

Happens even in Gaussian (with full covariance)!

Question: What if we keep the “black box” nature of the target distribution, but
capitalize on the structure of the variational family? Structure = Scores

58
Cai et al. Batch and match: black-box variational inference with a score-based divergence. ICML 2024.

Challenges of black-box variational inference
More expressive families face challenges in optimization: can have very slow
convergence due to noisy gradients, sensitivity to learning rates, batch sizes, etc.

Happens even in Gaussian (with full covariance)!

Question: What if we keep the “black box” nature of the target distribution, but
capitalize on the structure of the variational family? Structure = Scores

58
Cai et al. Batch and match: black-box variational inference with a score-based divergence. ICML 2024.

VI with score matching?
 Why scores? “Black box”: don’t need , just its (“Stein”) score
(Avoids normalizing constants)

π(z) ∇zlog π(z)

59

VI with score matching?
 Why scores? “Black box”: don’t need , just its (“Stein”) score
(Avoids normalizing constants)

π(z) ∇zlog π(z)

Given samples, how to make the scores close?

59

Lo
g

de
ns

ity

Latent space

target log density

VI with score matching?
 Why scores? “Black box”: don’t need , just its (“Stein”) score
(Avoids normalizing constants)

π(z) ∇zlog π(z)

Given samples, how to make the scores close?

59

Lo
g

de
ns

ity

Latent space

target log density

VI with score matching?
 Why scores? “Black box”: don’t need , just its (“Stein”) score
(Avoids normalizing constants)

π(z) ∇zlog π(z)

x x x

Given samples, how to make the scores close?

59

Lo
g

de
ns

ity

Latent space

target log density

VI with score matching?
 Why scores? “Black box”: don’t need , just its (“Stein”) score
(Avoids normalizing constants)

π(z) ∇zlog π(z)

x x x

Given samples, how to make the scores close?

59

Lo
g

de
ns

ity

Latent space

target log density

VI with score matching?
 Why scores? “Black box”: don’t need , just its (“Stein”) score
(Avoids normalizing constants)

π(z) ∇zlog π(z)

x x x

Given samples, how to make the scores close? For Gaussian :
• is a quadratic
•

!
log q(z)
∇log q(z) = Σ−1

q (z − μq)

59

Lo
g

de
ns

ity

Latent space

target log density

VI with score matching?
 Why scores? “Black box”: don’t need , just its (“Stein”) score
(Avoids normalizing constants)

π(z) ∇zlog π(z)

x x x

Given samples, how to make the scores close? For Gaussian :
• is a quadratic
•

!
log q(z)
∇log q(z) = Σ−1

q (z − μq)Gaussian log density

Lo
g

de
ns

ity

Latent space

59

Lo
g

de
ns

ity

Latent space

target log density

VI with score matching?
 Why scores? “Black box”: don’t need , just its (“Stein”) score
(Avoids normalizing constants)

π(z) ∇zlog π(z)

x x x

Given samples, how to make the scores close? For Gaussian :
• is a quadratic
•

!
log q(z)
∇log q(z) = Σ−1

q (z − μq)Gaussian log density

Lo
g

de
ns

ity

Latent space

59

Lo
g

de
ns

ity

Latent space

target log density

VI with score matching?
 Why scores? “Black box”: don’t need , just its (“Stein”) score
(Avoids normalizing constants)

π(z) ∇zlog π(z)

x x x

Given samples, how to make the scores close? For Gaussian :
• is a quadratic
•

!
log q(z)
∇log q(z) = Σ−1

q (z − μq)Gaussian log density

Lo
g

de
ns

ity

Latent space
x x x

59

Under mild conditions,
log p = log q ⟺ ∇log p = ∇log q

Modi et al.. Variational inference with Gaussian score matching. NeurIPS 2023.

Lo
g

de
ns

ity

Latent space

target log density

VI with score matching?
 Why scores? “Black box”: don’t need , just its (“Stein”) score
(Avoids normalizing constants)

π(z) ∇zlog π(z)

x x x

Given samples, how to make the scores close? For Gaussian :
• is a quadratic
•

!
log q(z)
∇log q(z) = Σ−1

q (z − μq)Gaussian log density

Lo
g

de
ns

ity

Latent space
x x x

59

Under mild conditions,
log p = log q ⟺ ∇log p = ∇log q

Modi et al.. Variational inference with Gaussian score matching. NeurIPS 2023.

Lo
g

de
ns

ity

Latent space

target log density

VI with score matching?
 Why scores? “Black box”: don’t need , just its (“Stein”) score
(Avoids normalizing constants)

π(z) ∇zlog π(z)

x x x

Given samples, how to make the scores close? For Gaussian :
• is a quadratic
•

!
log q(z)
∇log q(z) = Σ−1

q (z − μq)Gaussian log density

Lo
g

de
ns

ity

Latent space
x x x

But: can’t match scores
exactly at multiple points
for non-Gaussian targets

59

Under mild conditions,
log p = log q ⟺ ∇log p = ∇log q

Modi et al.. Variational inference with Gaussian score matching. NeurIPS 2023.

Lo
g

de
ns

ity

Latent space

target log density

VI with score matching?
 Why scores? “Black box”: don’t need , just its (“Stein”) score
(Avoids normalizing constants)

π(z) ∇zlog π(z)

Instead: Formulate variational inference with a score-based divergence

x x x

Given samples, how to make the scores close? For Gaussian :
• is a quadratic
•

!
log q(z)
∇log q(z) = Σ−1

q (z − μq)Gaussian log density

Lo
g

de
ns

ity

Latent space
x x x

But: can’t match scores
exactly at multiple points
for non-Gaussian targets

59

Fisher divergence
Fisher Divergence: measures the agreement between the scores of and :q π

Hyvarinen. Estimation of Non-Normalized Statistical Models by Score Matching. JMLR, 2005.

 &(q; π) = ∫ ∇zlog q(z) − ∇zlog π(z) 2 q(z) dz

60

Fisher divergence
Fisher Divergence: measures the agreement between the scores of and :q π

Hyvarinen. Estimation of Non-Normalized Statistical Models by Score Matching. JMLR, 2005.

 &(q; π) = ∫ ∇zlog q(z) − ∇zlog π(z) 2 q(z) dz

60
Yang et al. Variational approximations using Fisher divergence. arXiv, 2019.
Chen et al. Weighted Fisher divergence for high-dimensional Gaussian variational inference. arXiv, 2025

Fisher divergence
Fisher Divergence: measures the agreement between the scores of and :q π

Hyvarinen. Estimation of Non-Normalized Statistical Models by Score Matching. JMLR, 2005.

 &(q; π) = ∫ ∇zlog q(z) − ∇zlog π(z) 2 q(z) dz

60

Target

Yang et al. Variational approximations using Fisher divergence. arXiv, 2019.
Chen et al. Weighted Fisher divergence for high-dimensional Gaussian variational inference. arXiv, 2025

Fisher divergence
Fisher Divergence: measures the agreement between the scores of and :q π

Hyvarinen. Estimation of Non-Normalized Statistical Models by Score Matching. JMLR, 2005.

 &(q; π) = ∫ ∇zlog q(z) − ∇zlog π(z) 2 q(z) dz

60

KL div.Target

Yang et al. Variational approximations using Fisher divergence. arXiv, 2019.
Chen et al. Weighted Fisher divergence for high-dimensional Gaussian variational inference. arXiv, 2025

Fisher divergence
Fisher Divergence: measures the agreement between the scores of and :q π

Hyvarinen. Estimation of Non-Normalized Statistical Models by Score Matching. JMLR, 2005.

 &(q; π) = ∫ ∇zlog q(z) − ∇zlog π(z) 2 q(z) dz

60

KL div.

Fisher div.

Target

Yang et al. Variational approximations using Fisher divergence. arXiv, 2019.
Chen et al. Weighted Fisher divergence for high-dimensional Gaussian variational inference. arXiv, 2025

Fisher divergence
Fisher Divergence: measures the agreement between the scores of and :q π

How do we optimize this divergence?
“Reparameterization trick”+SGD? Same issues as ADVI.

Hyvarinen. Estimation of Non-Normalized Statistical Models by Score Matching. JMLR, 2005.

 &(q; π) = ∫ ∇zlog q(z) − ∇zlog π(z) 2 q(z) dz

60

KL div.

Fisher div.

Target

Yang et al. Variational approximations using Fisher divergence. arXiv, 2019.
Chen et al. Weighted Fisher divergence for high-dimensional Gaussian variational inference. arXiv, 2025

Weighted Fisher divergence & full-covariance Gaussians

 &(q; π) = ∫ ∇zlog q(z) − ∇zlog π(z) 2

Cov(q)
q(z) dz

Divergence: measure the agreement between the scores of and :q π

∥x∥2
Σ := x⊤Σ x

Cai et al. Batch and match: black-box variational inference with a score-based divergence. ICML 2024.
61

Weighted Fisher divergence & full-covariance Gaussians

 &(q; π) = ∫ ∇zlog q(z) − ∇zlog π(z) 2

Cov(q)
q(z) dz

Divergence: measure the agreement between the scores of and :q π

Properties:
• Non-negativity (with equality iff)
• Invariant to affine transformations leads to closed-form solutions

(not true for Fisher div.)

& ≥ 0 p = q
⟹

∥x∥2
Σ := x⊤Σ x

Cai et al. Batch and match: black-box variational inference with a score-based divergence. ICML 2024.
61

Weighted Fisher divergence & full-covariance Gaussians

 &(q; π) = ∫ ∇zlog q(z) − ∇zlog π(z) 2

Cov(q)
q(z) dz

Divergence: measure the agreement between the scores of and :q π

Properties:
• Non-negativity (with equality iff)
• Invariant to affine transformations leads to closed-form solutions

(not true for Fisher div.)

& ≥ 0 p = q
⟹

∥x∥2
Σ := x⊤Σ x

How do we optimize this divergence? Again could do “reparameterization trick”
+SGD, but same issues as ADVI.

Cai et al. Batch and match: black-box variational inference with a score-based divergence. ICML 2024.
61

Observation for Gaussians: scores contain a lot of structure

 &(q; π) = ∫ ∇zlog q(z) − ∇zlog π(z) 2

Cov(q)
q(z) dz

Covariance-weighted Fisher divergence:

62

Observation for Gaussians: scores contain a lot of structure

 &(q; π) = ∫ ∇zlog q(z) − ∇zlog π(z) 2

Cov(q)
q(z) dz

Covariance-weighted Fisher divergence:

Form an empirical estimate:
Sample from a distribution (that is not z1, …, zB ν q)

62

Observation for Gaussians: scores contain a lot of structure

 &(q; π) = ∫ ∇zlog q(z) − ∇zlog π(z) 2

Cov(q)
q(z) dz

Covariance-weighted Fisher divergence:

Form an empirical estimate:
Sample from a distribution (that is not z1, …, zB ν q)

̂& (q; π) = 1
B ∑B

b=1 ∇zlog q(zb) − ∇zlog π(zb)
2

Cov(q)

62

Observation for Gaussians: scores contain a lot of structure

 &(q; π) = ∫ ∇zlog q(z) − ∇zlog π(z) 2

Cov(q)
q(z) dz

Covariance-weighted Fisher divergence:

Form an empirical estimate:
Sample from a distribution (that is not z1, …, zB ν q)

̂& (q; π) = 1
B ∑B

b=1 ∇zlog q(zb) − ∇zlog π(zb)
2

Cov(q)

If is Gaussian and , π B > D

62

Observation for Gaussians: scores contain a lot of structure

 &(q; π) = ∫ ∇zlog q(z) − ∇zlog π(z) 2

Cov(q)
q(z) dz

Covariance-weighted Fisher divergence:

Form an empirical estimate:
Sample from a distribution (that is not z1, …, zB ν q)

̂& (q; π) = 1
B ∑B

b=1 ∇zlog q(zb) − ∇zlog π(zb)
2

Cov(q)

If is Gaussian and , π B > D
 recovers the exact mean and covariance! ̂μ, Σ̂ = arg min

μ,Σ
̂& (qμ,Σ; π)

62

Observation for Gaussians: scores contain a lot of structure

 &(q; π) = ∫ ∇zlog q(z) − ∇zlog π(z) 2

Cov(q)
q(z) dz

Covariance-weighted Fisher divergence:

Form an empirical estimate:
Sample from a distribution (that is not z1, …, zB ν q)

̂& (q; π) = 1
B ∑B

b=1 ∇zlog q(zb) − ∇zlog π(zb)
2

Cov(q)

If is Gaussian and , π B > D
 recovers the exact mean and covariance! ̂μ, Σ̂ = arg min

μ,Σ
̂& (qμ,Σ; π)

E.g., for , only need 2 points! Compare to: 2 samples has error D = 1 =(1/ 2)

62

Observation for Gaussians: scores contain a lot of structure

 &(q; π) = ∫ ∇zlog q(z) − ∇zlog π(z) 2

Cov(q)
q(z) dz

Covariance-weighted Fisher divergence:

How to turn this into an algorithm? Need a sampling distribution.

Form an empirical estimate:
Sample from a distribution (that is not z1, …, zB ν q)

̂& (q; π) = 1
B ∑B

b=1 ∇zlog q(zb) − ∇zlog π(zb)
2

Cov(q)

If is Gaussian and , π B > D
 recovers the exact mean and covariance! ̂μ, Σ̂ = arg min

μ,Σ
̂& (qμ,Σ; π)

E.g., for , only need 2 points! Compare to: 2 samples has error D = 1 =(1/ 2)

62

Score-based variational inference
Score-based VI: Want q* = arg min

q∈!
&(q; π)

̂& (q; π) = 1
B

B

∑
b=1

∇zlog q(zb) − ∇zlog π(zb)
2

Cov(q)

Monte Carlo estimate (unbiased):
Sample from z1, …, zB q

63

Score-based variational inference
Score-based VI: Want q* = arg min

q∈!
&(q; π)

̂& (q; π) = 1
B

B

∑
b=1

∇zlog q(zb) − ∇zlog π(zb)
2

Cov(q)

Monte Carlo estimate (unbiased):
Sample from z1, …, zB q

But: cannot simultaneously sample from and optimize over ! q

63

Score-based variational inference
Score-based VI: Want q* = arg min

q∈!
&(q; π)

̂& (q; π) = 1
B

B

∑
b=1

∇zlog q(zb) − ∇zlog π(zb)
2

Cov(q)

π

!

Monte Carlo estimate (unbiased):
Sample from z1, …, zB q

Iterative procedure:

But: cannot simultaneously sample from and optimize over ! q

63

Score-based variational inference
Score-based VI: Want q* = arg min

q∈!
&(q; π)

̂& (q; π) = 1
B

B

∑
b=1

∇zlog q(zb) − ∇zlog π(zb)
2

Cov(q)

π

!q0

Monte Carlo estimate (unbiased):
Sample from z1, …, zB q

Iterative procedure:

But: cannot simultaneously sample from and optimize over ! q

63

Score-based variational inference
Score-based VI: Want q* = arg min

q∈!
&(q; π)

̂& (q; π) = 1
B

B

∑
b=1

∇zlog q(zb) − ∇zlog π(zb)
2

Cov(q)

π

!q0

Monte Carlo estimate (unbiased):
Sample from z1, …, zB q

Iterative procedure:

But: cannot simultaneously sample from and optimize over ! q

63

Score-based variational inference
Score-based VI: Want q* = arg min

q∈!
&(q; π)

̂& (q; π) = 1
B

B

∑
b=1

∇zlog q(zb) − ∇zlog π(zb)
2

Cov(q)

π

!
q*

q0

Monte Carlo estimate (unbiased):
Sample from z1, …, zB q

Iterative procedure:

But: cannot simultaneously sample from and optimize over ! q

63

Score-based variational inference
Score-based VI: Want q* = arg min

q∈!
&(q; π)

̂& (q; π) = 1
B

B

∑
b=1

∇zlog q(zb) − ∇zlog π(zb)
2

Cov(q)

qt

π

!
q*

q0

Monte Carlo estimate (unbiased):
Sample from z1, …, zB q

Iterative procedure:

But: cannot simultaneously sample from and optimize over ! q

63

Score-based variational inference
Score-based VI: Want q* = arg min

q∈!
&(q; π)

̂& (q; π) = 1
B

B

∑
b=1

∇zlog q(zb) − ∇zlog π(zb)
2

Cov(q)

qt+1 = arg min
q∈!

̂& qt
(q; π)

qt

π

!
q*

q0

Monte Carlo estimate (unbiased):
Sample from z1, …, zB q

Iterative procedure:

But: cannot simultaneously sample from and optimize over ! q

63

Score-based variational inference
Score-based VI: Want q* = arg min

q∈!
&(q; π)

̂& (q; π) = 1
B

B

∑
b=1

∇zlog q(zb) − ∇zlog π(zb)
2

Cov(q)

qt+1 = arg min
q∈!

̂& qt
(q; π)

qt

π

!
q*

q0

Monte Carlo estimate (unbiased):
Sample from z1, …, zB q

Iterative procedure:

But: cannot simultaneously sample from and optimize over ! q

63

Score-based variational inference
Score-based VI: Want q* = arg min

q∈!
&(q; π)

̂& (q; π) = 1
B

B

∑
b=1

∇zlog q(zb) − ∇zlog π(zb)
2

Cov(q)

qt+1 = arg min
q∈!

̂& qt
(q; π)

qt

π

!
q*

q0

Monte Carlo estimate (unbiased):
Sample from z1, …, zB q

small step

Iterative procedure:

But: cannot simultaneously sample from and optimize over ! q

Introduces bias: regularize the score divergence so we don’t move too far from qt

63

Score-based variational inference
Score-based VI: Want q* = arg min

q∈!
&(q; π)

̂& (q; π) = 1
B

B

∑
b=1

∇zlog q(zb) − ∇zlog π(zb)
2

Cov(q)

qt+1 = arg min
q∈!

̂& qt
(q; π)

qt

π

!
q*

q0

Monte Carlo estimate (unbiased):
Sample from z1, …, zB q

small step

Iterative procedure:

But: cannot simultaneously sample from and optimize over ! q

Introduces bias: regularize the score divergence so we don’t move too far from qt

+ regularization(qt; q)

63

Score-based variational inference
Score-based VI: Want q* = arg min

q∈!
&(q; π)

̂& (q; π) = 1
B

B

∑
b=1

∇zlog q(zb) − ∇zlog π(zb)
2

Cov(q)

qt+1 = arg min
q∈!

̂& qt
(q; π)

qt

π

!
q*

q0

Monte Carlo estimate (unbiased):
Sample from z1, …, zB q

small step

Iterative procedure:

But: cannot simultaneously sample from and optimize over ! q

Introduces bias: regularize the score divergence so we don’t move too far from qt

+ regularization(qt; q)

Proximal point algorithm:
 Here, the global minimum of the subproblem can be computed analytically!

63

Batch and match for full covariance Gaussians

Batch step: given current variational estimate

Sample a batch of points (call the batch size)

Compute empirical score-based divergence on batch of points

qt
z1, …, zB B ̂& qt

(q; π)
Match step:

Fit new variational distribution qt+1 = arg min
q∈!

̂& qt
(q; π) + 2

λt
KL(qt; q)

Iterate:

64

Batch and match for full covariance Gaussians

Batch step: given current variational estimate

Sample a batch of points (call the batch size)

Compute empirical score-based divergence on batch of points

qt
z1, …, zB B ̂& qt

(q; π)
Match step:

Fit new variational distribution qt+1 = arg min
q∈!

̂& qt
(q; π) + 2

λt
KL(qt; q)

empirical
divergence

Iterate:

64

Batch and match for full covariance Gaussians

Batch step: given current variational estimate

Sample a batch of points (call the batch size)

Compute empirical score-based divergence on batch of points

qt
z1, …, zB B ̂& qt

(q; π)
Match step:

Fit new variational distribution qt+1 = arg min
q∈!

̂& qt
(q; π) + 2

λt
KL(qt; q)

empirical
divergence

“learning
rate”

Iterate:

64

Batch and match for full covariance Gaussians

Batch step: given current variational estimate

Sample a batch of points (call the batch size)

Compute empirical score-based divergence on batch of points

qt
z1, …, zB B ̂& qt

(q; π)
Match step:

Fit new variational distribution qt+1 = arg min
q∈!

̂& qt
(q; π) + 2

λt
KL(qt; q)

empirical
divergence

regularizer“learning
rate”

Iterate:

64

Batch and match for full covariance Gaussians

Batch step: given current variational estimate

Sample a batch of points (call the batch size)

Compute empirical score-based divergence on batch of points

qt
z1, …, zB B ̂& qt

(q; π)
Match step:

Fit new variational distribution qt+1 = arg min
q∈!

̂& qt
(q; π) + 2

λt
KL(qt; q)

empirical
divergence

regularizer“learning
rate”

Iterate:

In this problem, the global minimum of the subproblem can be computed analytically!

64

 update: solve a quadratic matrix equationΣt+1

Σt+1 Ut Σt+1 + Σt+1 = Vt

Batch and match for full covariance Gaussians

Batch step: given current variational estimate

Sample a batch of points (call the batch size)

Compute empirical score-based divergence on batch of points

qt
z1, …, zB B ̂& qt

(q; π)
Match step:

Fit new variational distribution qt+1 = arg min
q∈!

̂& qt
(q; π) + 2

λt
KL(qt; q)

empirical
divergence

regularizer“learning
rate”

Iterate:

In this problem, the global minimum of the subproblem can be computed analytically!

64

 update: solve a quadratic matrix equationΣt+1

Σt+1 Ut Σt+1 + Σt+1 = Vt

Batch and match for full covariance Gaussians

Batch step: given current variational estimate

Sample a batch of points (call the batch size)

Compute empirical score-based divergence on batch of points

qt
z1, …, zB B ̂& qt

(q; π)
Match step:

Fit new variational distribution qt+1 = arg min
q∈!

̂& qt
(q; π) + 2

λt
KL(qt; q)

empirical
divergence

regularizer“learning
rate”

Iterate:

In this problem, the global minimum of the subproblem can be computed analytically!

Matrices that depend on current covariance, statistics of the batch and scores
64

 update: solve a quadratic matrix equationΣt+1

Σt+1 Ut Σt+1 + Σt+1 = Vt

Batch and match for full covariance Gaussians

Batch step: given current variational estimate

Sample a batch of points (call the batch size)

Compute empirical score-based divergence on batch of points

qt
z1, …, zB B ̂& qt

(q; π)
Match step:

Fit new variational distribution qt+1 = arg min
q∈!

̂& qt
(q; π) + 2

λt
KL(qt; q)

empirical
divergence

regularizer“learning
rate”

Iterate:

In this problem, the global minimum of the subproblem can be computed analytically!

Matrices that depend on current covariance, statistics of the batch and scores

μt+1 = μt + λt

1 + λt
Σt+1 ḡ

mean update:

64

 update: solve a quadratic matrix equationΣt+1

Σt+1 Ut Σt+1 + Σt+1 = Vt

Batch and match for full covariance Gaussians

Batch step: given current variational estimate

Sample a batch of points (call the batch size)

Compute empirical score-based divergence on batch of points

qt
z1, …, zB B ̂& qt

(q; π)
Match step:

Fit new variational distribution qt+1 = arg min
q∈!

̂& qt
(q; π) + 2

λt
KL(qt; q)

empirical
divergence

regularizer“learning
rate”

Iterate:

In this problem, the global minimum of the subproblem can be computed analytically!

Matrices that depend on current covariance, statistics of the batch and scores

μt+1 = μt + λt

1 + λt
Σt+1 ḡ

mean update:

mean of scores
computed on the batch

64

Application: deep generative modeling
Data: high-dimensional object (image) xn ∈ ℝ3072

Lower-dimensional latent representation zn ∈ ℝ256

Cai et al. Batch and match: black-box variational inference with a score-based divergence. ICML 2024. 65

Application: deep generative modeling
Deep generative model:

Data: high-dimensional object (image) xn ∈ ℝ3072

Lower-dimensional latent representation zn ∈ ℝ256

Cai et al. Batch and match: black-box variational inference with a score-based divergence. ICML 2024. 65

Application: deep generative modeling
Deep generative model:

zn ∼ #(0,I)
xn |zn ∼ #(Ω(zn, ̂θ), σ2I)

Data: high-dimensional object (image) xn ∈ ℝ3072

Lower-dimensional latent representation zn ∈ ℝ256

Cai et al. Batch and match: black-box variational inference with a score-based divergence. ICML 2024. 65

Application: deep generative modeling
Deep generative model:

zn ∼ #(0,I)
xn |zn ∼ #(Ω(zn, ̂θ), σ2I)

Data: high-dimensional object (image) xn ∈ ℝ3072

Lower-dimensional latent representation zn ∈ ℝ256

Parameters of the neural network
(pre-trained to maximize likelihood)

Cai et al. Batch and match: black-box variational inference with a score-based divergence. ICML 2024. 65

Application: deep generative modeling
Deep generative model:

zn ∼ #(0,I)
xn |zn ∼ #(Ω(zn, ̂θ), σ2I)

Data: high-dimensional object (image) xn ∈ ℝ3072

Lower-dimensional latent representation zn ∈ ℝ256

Parameters of the neural network
(pre-trained to maximize likelihood)

Problem: given a test image , approximate using VIx′ p(z′ |x′)

Cai et al. Batch and match: black-box variational inference with a score-based divergence. ICML 2024. 65

Application: deep generative modeling
Deep generative model:

zn ∼ #(0,I)
xn |zn ∼ #(Ω(zn, ̂θ), σ2I)

Data: high-dimensional object (image) xn ∈ ℝ3072

Lower-dimensional latent representation zn ∈ ℝ256

Parameters of the neural network
(pre-trained to maximize likelihood)

Problem: given a test image , approximate using VIx′ p(z′ |x′)

Reconstruct by feeding the posterior mean estimate into the neural network.x′

Cai et al. Batch and match: black-box variational inference with a score-based divergence. ICML 2024. 65

Application: deep generative modeling
Deep generative model:

zn ∼ #(0,I)
xn |zn ∼ #(Ω(zn, ̂θ), σ2I)

Data: high-dimensional object (image) xn ∈ ℝ3072

Lower-dimensional latent representation zn ∈ ℝ256

Parameters of the neural network
(pre-trained to maximize likelihood)

Problem: given a test image , approximate using VIx′ p(z′ |x′)

Reconstruct by feeding the posterior mean estimate into the neural network.x′

Iterations

Cai et al. Batch and match: black-box variational inference with a score-based divergence. ICML 2024. 65

Application: deep generative modeling
Deep generative model:

zn ∼ #(0,I)
xn |zn ∼ #(Ω(zn, ̂θ), σ2I)

Data: high-dimensional object (image) xn ∈ ℝ3072

Lower-dimensional latent representation zn ∈ ℝ256

Parameters of the neural network
(pre-trained to maximize likelihood)

Problem: given a test image , approximate using VIx′ p(z′ |x′)

Reconstruct by feeding the posterior mean estimate into the neural network.x′

Iterations

Image reconstruction error

ADVI
BaM Amortized

VI

Cai et al. Batch and match: black-box variational inference with a score-based divergence. ICML 2024. 65

BaM with converges faster than ADVI with any batch size.B = 300

Application: deep generative modeling
Deep generative model:

zn ∼ #(0,I)
xn |zn ∼ #(Ω(zn, ̂θ), σ2I)

Data: high-dimensional object (image) xn ∈ ℝ3072

Lower-dimensional latent representation zn ∈ ℝ256

Parameters of the neural network
(pre-trained to maximize likelihood)

Problem: given a test image , approximate using VIx′ p(z′ |x′)

Reconstruct by feeding the posterior mean estimate into the neural network.x′

Iterations

Image reconstruction error

ADVI
BaM Amortized

VI

Cai et al. Batch and match: black-box variational inference with a score-based divergence. ICML 2024. 65

Extensions: high dimensional, large data sets

Cai, Modi, Margossian, Gower, Blei, Saul. EigenVI: score-based variational inference with orthogonal function expansions. NeurIPS 2024.
Modi & Cai, Saul. Batch, match, and patch: low-rank approximations for score-based variational inference. AISTATS 2025.

66

Extensions: high dimensional, large data sets
Assumes we can fit a covariance with parameters. What about in high dimensions?=(D2)

• A “patch” step: we project the covariance update to low-rank + diagonal
• The resulting covariance update has cost=(D)

Cai, Modi, Margossian, Gower, Blei, Saul. EigenVI: score-based variational inference with orthogonal function expansions. NeurIPS 2024.
Modi & Cai, Saul. Batch, match, and patch: low-rank approximations for score-based variational inference. AISTATS 2025.

66

Extensions: high dimensional, large data sets
Assumes we can fit a covariance with parameters. What about in high dimensions?=(D2)

• A “patch” step: we project the covariance update to low-rank + diagonal
• The resulting covariance update has cost=(D)

How can we use score-based VI for Bayesian inference with massive data sets?
• Can use BaM with a noisy score , computed from a subsampled data set∇̂log p(z)

Cai, Modi, Margossian, Gower, Blei, Saul. EigenVI: score-based variational inference with orthogonal function expansions. NeurIPS 2024.
Modi & Cai, Saul. Batch, match, and patch: low-rank approximations for score-based variational inference. AISTATS 2025.

66

Extensions: high dimensional, large data sets
Assumes we can fit a covariance with parameters. What about in high dimensions?=(D2)

• A “patch” step: we project the covariance update to low-rank + diagonal
• The resulting covariance update has cost=(D)

What about richer variational families?

How can we use score-based VI for Bayesian inference with massive data sets?
• Can use BaM with a noisy score , computed from a subsampled data set∇̂log p(z)

Cai, Modi, Margossian, Gower, Blei, Saul. EigenVI: score-based variational inference with orthogonal function expansions. NeurIPS 2024.
Modi & Cai, Saul. Batch, match, and patch: low-rank approximations for score-based variational inference. AISTATS 2025.

66

Extensions: high dimensional, large data sets
Assumes we can fit a covariance with parameters. What about in high dimensions?=(D2)

• A “patch” step: we project the covariance update to low-rank + diagonal
• The resulting covariance update has cost=(D)

What about richer variational families?

How can we use score-based VI for Bayesian inference with massive data sets?
• Can use BaM with a noisy score , computed from a subsampled data set∇̂log p(z)

Cai, Modi, Margossian, Gower, Blei, Saul. EigenVI: score-based variational inference with orthogonal function expansions. NeurIPS 2024.
Modi & Cai, Saul. Batch, match, and patch: low-rank approximations for score-based variational inference. AISTATS 2025.

• EigenVI: orthogonal function expansions

66

Extensions: high dimensional, large data sets
Assumes we can fit a covariance with parameters. What about in high dimensions?=(D2)

• A “patch” step: we project the covariance update to low-rank + diagonal
• The resulting covariance update has cost=(D)

What about richer variational families? target
in ℝ

How can we use score-based VI for Bayesian inference with massive data sets?
• Can use BaM with a noisy score , computed from a subsampled data set∇̂log p(z)

Cai, Modi, Margossian, Gower, Blei, Saul. EigenVI: score-based variational inference with orthogonal function expansions. NeurIPS 2024.
Modi & Cai, Saul. Batch, match, and patch: low-rank approximations for score-based variational inference. AISTATS 2025.

• EigenVI: orthogonal function expansions

66

Extensions: high dimensional, large data sets
Assumes we can fit a covariance with parameters. What about in high dimensions?=(D2)

• A “patch” step: we project the covariance update to low-rank + diagonal
• The resulting covariance update has cost=(D)

What about richer variational families? target
in ℝ

K = 1

How can we use score-based VI for Bayesian inference with massive data sets?
• Can use BaM with a noisy score , computed from a subsampled data set∇̂log p(z)

Cai, Modi, Margossian, Gower, Blei, Saul. EigenVI: score-based variational inference with orthogonal function expansions. NeurIPS 2024.
Modi & Cai, Saul. Batch, match, and patch: low-rank approximations for score-based variational inference. AISTATS 2025.

• EigenVI: orthogonal function expansions

66

Extensions: high dimensional, large data sets
Assumes we can fit a covariance with parameters. What about in high dimensions?=(D2)

• A “patch” step: we project the covariance update to low-rank + diagonal
• The resulting covariance update has cost=(D)

What about richer variational families? target
in ℝ

K = 1

K = 3

How can we use score-based VI for Bayesian inference with massive data sets?
• Can use BaM with a noisy score , computed from a subsampled data set∇̂log p(z)

Cai, Modi, Margossian, Gower, Blei, Saul. EigenVI: score-based variational inference with orthogonal function expansions. NeurIPS 2024.
Modi & Cai, Saul. Batch, match, and patch: low-rank approximations for score-based variational inference. AISTATS 2025.

• EigenVI: orthogonal function expansions

66

Extensions: high dimensional, large data sets
Assumes we can fit a covariance with parameters. What about in high dimensions?=(D2)

• A “patch” step: we project the covariance update to low-rank + diagonal
• The resulting covariance update has cost=(D)

What about richer variational families? target
in ℝ

K = 1

K = 3
K = 5

How can we use score-based VI for Bayesian inference with massive data sets?
• Can use BaM with a noisy score , computed from a subsampled data set∇̂log p(z)

Cai, Modi, Margossian, Gower, Blei, Saul. EigenVI: score-based variational inference with orthogonal function expansions. NeurIPS 2024.
Modi & Cai, Saul. Batch, match, and patch: low-rank approximations for score-based variational inference. AISTATS 2025.

• EigenVI: orthogonal function expansions

66

Extensions: high dimensional, large data sets
Assumes we can fit a covariance with parameters. What about in high dimensions?=(D2)

• A “patch” step: we project the covariance update to low-rank + diagonal
• The resulting covariance update has cost=(D)

What about richer variational families? target
in ℝ

K = 1

K = 3
K = 5
K = 7

How can we use score-based VI for Bayesian inference with massive data sets?
• Can use BaM with a noisy score , computed from a subsampled data set∇̂log p(z)

Cai, Modi, Margossian, Gower, Blei, Saul. EigenVI: score-based variational inference with orthogonal function expansions. NeurIPS 2024.
Modi & Cai, Saul. Batch, match, and patch: low-rank approximations for score-based variational inference. AISTATS 2025.

• EigenVI: orthogonal function expansions

66

Extensions: high dimensional, large data sets
Assumes we can fit a covariance with parameters. What about in high dimensions?=(D2)

• A “patch” step: we project the covariance update to low-rank + diagonal
• The resulting covariance update has cost=(D)

What about richer variational families? target
in ℝ

K = 1

K = 3
K = 5
K = 7

How can we use score-based VI for Bayesian inference with massive data sets?
• Can use BaM with a noisy score , computed from a subsampled data set∇̂log p(z)

Cai, Modi, Margossian, Gower, Blei, Saul. EigenVI: score-based variational inference with orthogonal function expansions. NeurIPS 2024.
Modi & Cai, Saul. Batch, match, and patch: low-rank approximations for score-based variational inference. AISTATS 2025.

• EigenVI: orthogonal function expansions

66

Extensions: high dimensional, large data sets
Assumes we can fit a covariance with parameters. What about in high dimensions?=(D2)

• A “patch” step: we project the covariance update to low-rank + diagonal
• The resulting covariance update has cost=(D)

What about richer variational families? target
in ℝ

K = 1

K = 3
K = 5
K = 7

How can we use score-based VI for Bayesian inference with massive data sets?
• Can use BaM with a noisy score , computed from a subsampled data set∇̂log p(z)

Cai, Modi, Margossian, Gower, Blei, Saul. EigenVI: score-based variational inference with orthogonal function expansions. NeurIPS 2024.
Modi & Cai, Saul. Batch, match, and patch: low-rank approximations for score-based variational inference. AISTATS 2025.

• EigenVI: orthogonal function expansions
• Products of experts

66

Summary of score-based VI

67

We discussed score-based variational inference

• black-box and only require computing the score of the target
• VI with score-based divergences, e.g., Fisher divergence

• For Gaussian , can apply reparameterization trick to optimize
• VI with a covariance-weighted Fisher divergence

• Has some nice properties, including computational benefits
• For Gaussian , can also use reparameterization trick to optimize
• Batch & match: Gaussian full covariance, closed-form proximal updates

• Fast convergence for near-Gaussian targets
• Extensions of score-based VI to high dimensions, large data sets, and

non-Gaussian families

∇zlog π(z)

!

!

Designing ! Distributions

Normalizing flows
Auxiliary variables & mixture distributions

Use many layers (hierarchical) + continuous-time limit

Diffusion SDE & Continuous Normalizing Flow posteriors for approximate inference

68

Auxiliary Variables & Mixture Distributions

• Construct !(#|%) as a (hierarchical) mixture distribution

! #|% = ∫ ! #), %) !()|%) +)
• ! is the auxiliary variable used to enrich the approximate posterior

• Example: Mixture of Gaussians

! ∼ # !|% = '!()*+,-.!/ 0!, … , 0"
3 ∼ # 3 !, %) = 5(7;9#, Σ#)

Can be very flexible with many components!

69

Auxiliary Variables & Mixture Distributions

Intractable density
$ %|' = ∫ $ % *, ')$(*|') .*

Estimated by Monte Carlo:
*! ∼ $ *|' , %! ∼ $ % *! , ')

• Construct !(#|%) as a (hierarchical) mixture distribution

! #|% = ∫ ! #), %) !()|%) +)
• ! is the auxiliary variable used to enrich the approximate posterior
• Now the variational lower-bound becomes intractable:

; < = =0(1|2) log A %, 3 − =0 1|2 [log #(3|%)]

70

Auxiliary Variables & Mixture Distributions

• Solution: introducing an auxiliary variational lower-bound ,(-, .)
with an auxiliary distribution .()|#, %):

log 6(')

78 $(%|') 6(%|')

8 9 = :"($|&) log 6 '|% − 78[$(%|')‖6(%)]

Agakov and Barber. An Auxiliary Variational Method. ICONIP 2004
Salimans et al. Markov Chain Monte Carlo and Variational Inference: Bridging the Gap. ICML 2015
Ranganath et al. Hierarchical Variational Models. ICML 2016

log $(&|() = log
! & +, (!(#|%)

!(#|',%) = log
! & +, (!(#|%)

)(#|',%) − log
! + &, (
)(#|',%)

(Bayes’ rule) (insert in the auxiliary distribution)

71

Auxiliary Variables & Mixture Distributions

• Solution: introducing an auxiliary variational lower-bound ,(-, .)
with an auxiliary distribution .()|#, %):

log 6(')

78 $(%|') 6(%|')

Agakov and Barber. An Auxiliary Variational Method. ICONIP 2004
Salimans et al. Markov Chain Monte Carlo and Variational Inference: Bridging the Gap. ICML 2015
Ranganath et al. Hierarchical Variational Models. ICML 2016

log $(&|() = log
! & +, (!(#|%)

!(#|',%) = log
! & +, (!(#|%)

)(#|',%) − log
! + &, (
)(#|',%)

= "![$% & '|), + ‖-('|), +)]
(drop this last term)

⇒/0[$(&|()‖3(&)] = 5! &, + (log
! & +, (! + (
* ') + &, (− 5! &, + ([log

! + &, (
) + &, (]

8 9 = :"($|&) log 6 '|% − 78[$(%|')‖6(%)]

= $% &), '|+ ‖1())-('|), +)

72

Auxiliary Variables & Mixture Distributions

• Solution: introducing an auxiliary variational lower-bound ,(-, .)
with an auxiliary distribution .()|#, %):

log 6(')

78 $(%|') 6(%|')

8 9, ? = :" $,)|& log 6 ' % − 78[$ %, *|' | 6 % ? * %, '

:" $|& 78 $ * %, ' |?(*|%, ')]]

Agakov and Barber. An Auxiliary Variational Method. ICONIP 2004
Salimans et al. Markov Chain Monte Carlo and Variational Inference: Bridging the Gap. ICML 2015
Ranganath et al. Hierarchical Variational Models. ICML 2016

8 9 = :"($|&) log 6 '|% − 78[$(%|')‖6(%)]

73

Auxiliary Variables & Mixture Distributions

• Solution: introducing an auxiliary variational lower-bound ,(-, .)
with an auxiliary distribution .()|#, %):

log 6(')

78 $(%|') 6(%|')

8 9, ? = :" $,)|& log 6 ' % − 78[$ %, *|' | 6 % ? * %, '

:" $|& 78 $ * %, ' |?(*|%, ')]]

Agakov and Barber. An Auxiliary Variational Method. ICONIP 2004
Salimans et al. Markov Chain Monte Carlo and Variational Inference: Bridging the Gap. ICML 2015
Ranganath et al. Hierarchical Variational Models. ICML 2016

• Optimize 6(+|&, () to close the gap!

• 0 7, 6 estimated by Monte Carlo:++ ∼ $ +|(, &+ ∼ $ & ++, ()

8 9 = :"($|&) log 6 '|% − 78[$(%|')‖6(%)]

74

Auxiliary Variables & Mixture Distributions

• Solution: introducing an auxiliary variational lower-bound ,(-, .)
with an auxiliary distribution .()|#, %):

log 6(')

78 $(%|') 6(%|')

8 9, ? = :" $,)|& log 6 ' % − 78[$ %, *|' | 6 % ? * %, '

:" $|& 78 $ * %, ' |?(*|%, ')]]

Agakov and Barber. An Auxiliary Variational Method. ICONIP 2004
Salimans et al. Markov Chain Monte Carlo and Variational Inference: Bridging the Gap. ICML 2015
Ranganath et al. Hierarchical Variational Models. ICML 2016

Total gap:
78[$(%, *|')‖6(%, *|')]

6 %, *|' ≔ 6 %|' ?(*|%, ')

Augmented generative model view:
3((, &, +) ≔ 3 & 3 (& 6(+|&, () ⇒ 3 &, + (= 3 & (6(+|&, ()

&

(

+

8 9 = :"($|&) log 6 '|% − 78[$(%|')‖6(%)]

75

Auxiliary Variables & Mixture Distributions
• Hierarchical mixture distributions for !(#,)|%)

• VI-MCMC hybrid: build #(3) with a Markov Chain:

Salimans et al. Markov Chain Monte Carlo and Variational Inference: Bridging the Gap. ICML 2015
Huang et al. Improving Explorability in Variational Inference with Annealed Variational Objectives. NeurIPS 2018

Learn the transition kernel with VI:

$ %*:,|' = ∏-.*
, 7/ %- %-0*), %1 ≔ '

% ≔ %, , * = %*:,0*

&, &- &. &/
7/ 7/ 7/

? %*:,0*|%, = ∏-.2
, ? %-0* %-)

76

Auxiliary Variables & Mixture Distributions
• Hierarchical mixture distributions for !(#,)|%)

• VI-MCMC hybrid: build #(3) with a Markov Chain:

Salimans et al. Markov Chain Monte Carlo and Variational Inference: Bridging the Gap. ICML 2015
Huang et al. Improving Explorability in Variational Inference with Annealed Variational Objectives. NeurIPS 2018

Learn the transition kernel with VI:

&, &- &. &/
7/ 7/ 7/

0 7, 6 = 5! ',#|% log 3 (& − /0[$ &, +|(| 3 & 6 + &, (

Equivalent to minimizing 78[$(%, *|')‖6(%, *|')],

log 3 (−0(7, 6) = /0[$ &,:/ &1 6 &,:/2,|&/ 3(&/|()

6 %, *|' ≔ 6 %|' ?(*|%, '):

77

Auxiliary VI → Diffusion Posterior (Discrete Time)
• Consider the general case

log 3 (−0(7, 6) = /0[$ &,:/ (6 &,:/2,|&/ 3(&/|()

3B%
1()"|+)

(%, ≔ %)

original model

Original model:

posterior:
(the target)

6 ', %, = 6 ' %, 6(%,)

6 %,|'

1(+|)")

78

Auxiliary VI → Diffusion Posterior (Discrete Time)
• Consider the general case

log 3 (−0(7, 6) = /0[$ &,:/ (6 &,:/2,|&/ 3(&/|()

⋯⋯3B 3C 3CD! 3!
-()#$%|)#)

&()#|)#$%, +)
%

1()"|+) &()%|+)

(%, ≔ %)

original model augmented latent variable space

$ %*:,|' = $(%*|')∏-.2
, $ %- %-0*, ')

? %*:,0*|%, = ∏-.2
, ? %-0* %-)

Augmented model:

approx. posterior:

6(', %,)?(%*:,0*|%,)Original model:

posterior:
(the target)

6 ', %, = 6 ' %, 6(%,)

6 %,|'

1(+|)")

79

Auxiliary VI → Diffusion Posterior (Discrete Time)
• Consider the general case

⋯⋯3B 3C 3CD! 3!
-()#$%|)#)

&()#|)#$%, +)
%

1()"|+) &()%|+)

(%, ≔ %)

original model augmented latent variable space

$ %*:,|' = $(%*|')∏-.2
, $ %- %-0*, ')

? %-0*|%- = E(%-0*; 1 − H-%- , H-I)

Gaussian (fixed)
Augmented model:

approx. posterior:

6 ', %, ∏-.2
, ? %-0* %-) Original model:

posterior:
(the target)

6 ', %, = 6 ' %, 6(%,)

6 %,|'

1(+|)")

log 3 (−0(7, 6) = /0[$ &,:/ (6 &,:/2,|&/ 3(&/|()

80

Auxiliary VI → Diffusion Posterior (Discrete Time)
• Consider the general case

⋯⋯3B 3C 3CD! 3!
-()#$%|)#)

&()#|)#$%, +)
%

1()"|+) &()%|+)

(%, ≔ %)

original model augmented latent variable space

Original model:

posterior:
(the target)

6 ', %, = 6 ' %, 6(%,)

6 %,|'

1(+|)")

log 3 (−0(7, 6) = /0[$ &,:/ (6 &,:/2,|&/ 3(&/|()

! = # ! = 1- process (adding noise)

81

Auxiliary VI → Diffusion Posterior (Discrete Time)
• Consider posterior approximation case:

/0[$ &,:/ (6 &,:/2,|&/ 3(&/|()

⋯⋯3B 3C 3CD! 3!
-()#$%|)#)

&()#|)#$%, +)
%

1()"|+) &()%|+)

original model augmented latent variable space

(%, ≔ %)
$ %*:,|' = $(%*|')∏-.2

, $ %- %-0*, ')

? %-0*|%- = E(%-0*; 1 − H-%- , H-I)

Gaussian (fixed)
Augmented model:

approx. posterior:

6 %,|' ∏-.2
, ? %-0* %-)

1(+|)")

Target distribution
(density eval up to constant)

Objective:
• VI-style:

learning to denoise
the noisy posterior

adding noise
to posterior

target
(no samples)

82

Continuous-Time Limit: Diffusion SDE
• Re-define the time index: (→ (/H, 3C → 3C/B, and take limit H → ∞

/0[$ &[1,,] (6 &[1,,]

⋯⋯3! 3C &5265 3K
-()#$&#|)#)

&()#|)#$&#, +)
%

1()%|+) &()'|+)

original model augmented latent variable space

1(+|)%)

Objective:
• VI-style:

(%* ≔ %)

$ %[1,*]|' : $ %1|' = E M, Σ ,
.%- = O-(%- , ').P + R-. ST-

.%- = U- %- .P + V-.T-

SDE
Augmented model:

approx. posterior:

?(%[1,*]) satisfying ? %* = 6 %* ' ,

Target distribution
(density eval up to constant)

He et al. No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers. arXiv:2502.06685
Vargas et al. Denoising Diffusion Samplers. ICLR 2023

83

Continuous-Time Limit: Diffusion SDE
• Re-define the time index: (→ (/H, 3C → 3C/B, and take limit H → ∞

/0[$ &[1,,] (6 &[1,,]

⋯⋯3! 3C &5265 3K
-()#$&#|)#)

&()#|)#$&#, +)
%

1()%|+) &()'|+)

original model augmented latent variable space

1(+|)%)

Objective:
• VI-style:

(%* ≔ %)

$ %[1,*]|' : $ %1|' = E M, Σ ,
.%- = O-(%- , ').P + R-. ST-

.%- = U- %- .P + V-.T-

SDE
Augmented model:

approx. posterior:

?(%[1,*]) satisfying ? %* = 6 %* ' ,

Target distribution
(density eval up to constant)

Integrate from !: 1 → 0
from target to noise (“forward”)

Integrate from !: 0 → 1
from noise to target (“backward”)

He et al. No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers. arXiv:2502.06685
Vargas et al. Denoising Diffusion Samplers. ICLR 2023

84

Continuous-Time Limit: Diffusion SDE
• Re-define the time index: (→ (/H, 3C → 3C/B, and take limit H → ∞

/0[$ &[1,,] (6 &[1,,]

Objective:
• VI-style:

(%* ≔ %)

.%- = U- %- .P + V-.T-, P: 1 → 0

SDE
Augmented model:

approx. posterior:

?(%[1,*]) satisfying ? %* = 6 %* ' ,

He et al. No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers. arXiv:2502.06685
Vargas et al. Denoising Diffusion Samplers. ICLR 2023
Li et al. Scalable Gradients for Stochastic Differential Equations. AISTATS 2020
Song et al. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 2021

• Conditions for a well-defined KL divergence between SDEs:

- Going in the same direction for analytic form of the KL: reverse either the ? SDE or the $ SDE

$ %[1,*]|' : $ %1|' = E M, Σ ,
.%- = O-(%- , ').P + R-. ST-, P: 0 → 1

85

Continuity Equation

• Fokker-Planck Equation: marginal density evolution of
/:(#), 0: 0 → 1, for any # (not necessarily for # = #:)

J3C = KC 3C J(+ MC 3C JNC, 3K ∼ AK(3K)

OC AC(3) = −∇1 ⋅ KC 3 AC 3 +
1
2∇1

Y ⋅ (MCY 3 AC(3))

• Forward SDE evolution of #:, 0: 0 → 1

J3C = [KC 3C − MCY(3C)∇1 log AC 3C]J(+ MC(3C)J TNC, 3! ∼ A!(3!)
• Reverse SDE evolution of !!, ": 1 → 0 that preserves the density path

≔ ZU-(%-) (“backward drift”)

(“forward drift”)

⇒ ;5 &5 = <;5 &5 + >5-(&5)∇' log 35 &5

Anderson. Reverse-time diffusion equation models. Stochastic Process. Appl., 12(3): 313–326, 1982 86

Continuous-Time Limit: Diffusion SDE
• Re-define the time index: (→ (/H, 3C → 3C/B, and take limit H → ∞

/0[$ &[1,,] (6 &[1,,]

Objective:
• VI-style:

(%* ≔ %)

.%- = U- %- .P + V-.T-, P: 1 → 0

SDE
Augmented model:

approx. posterior:

?(%[1,*]) satisfying ? %* = 6 %* ' ,

He et al. No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers. arXiv:2502.06685
Vargas et al. Denoising Diffusion Samplers. ICLR 2023
Li et al. Scalable Gradients for Stochastic Differential Equations. AISTATS 2020
Song et al. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 2021

• Conditions for a well-defined KL divergence between SDEs:

- Going in the same direction for analytic form of the KL: reverse either the ? SDE or the $ SDE
Reverse ? SDE: .%- = [U- %- + V-

2∇$ log ?-(%-)].P + V-. ST-, P: 0 → 1

$ %[1,*]|' : $ %1|' = E M, Σ ,
.%- = O-(%- , ').P + R-. ST-, P: 0 → 1

87

Continuous-Time Limit: Diffusion SDE
• Re-define the time index: (→ (/H, 3C → 3C/B, and take limit H → ∞

/0[$ &[1,,] (6 &[1,,]

Objective:
• VI-style:

(%* ≔ %)

.%- = U- %- .P + V-.T-, P: 1 → 0

SDE
Augmented model:

approx. posterior:

?(%[1,*]) satisfying ? %* = 6 %* ' ,

He et al. No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers. arXiv:2502.06685
Vargas et al. Denoising Diffusion Samplers. ICLR 2023
Li et al. Scalable Gradients for Stochastic Differential Equations. AISTATS 2020
Song et al. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 2021

• Conditions for a well-defined KL divergence between SDEs:

- Going in the same direction for analytic form of the KL: reverse either the ? SDE or the $ SDE
Reverse ? SDE: .%- = [U- %- + V-

2∇$ log ?-(%-)].P + V-. ST-, P: 0 → 1

78[$ % 1,* ' ? % 1,* = 78 $ %1 ' ‖?(%1) +
1
2
:"[]

1

* 1

R-
2 U- %- + V-

2∇$ log ?- %- − O- %- , ' ‖2
2 .P

- Same amount of diffusion: R- = V-

$ %[1,*]|' : $ %1|' = E M, Σ ,
.%- = O-(%- , ').P + R-. ST-, P: 0 → 1

88

Continuous-Time Limit: Diffusion SDE
• Re-define the time index: (→ (/H, 3C → 3C/B, and take limit H → ∞

/0[$ &[1,,] (6 &[1,,]

Objective:
• VI-style:

(%* ≔ %)

.%- = H-%-.P + R 2H-.T-, P: 1 → 0

Diffusion SDE
Augmented model:

approx. posterior:

?(%[1,*]) satisfying ? %* = 6 %* ' ,

He et al. No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers. arXiv:2502.06685
Vargas et al. Denoising Diffusion Samplers. ICLR 2023
Li et al. Scalable Gradients for Stochastic Differential Equations. AISTATS 2020
Song et al. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 2021

• Conditions for a well-defined KL divergence between SDEs:

- Going in the same direction for analytic form of the KL: reverse either the ? SDE or the $ SDE
Reverse ? SDE: .%- = [H-%- + 2R2H-∇$ log ?-(%-)].P + R 2H-. ST-, P: 0 → 1

78[$ % 1,* ' ? % 1,* = 78 $ %1 ' ‖?(%1) +
1
2R2

:"[]
1

* 1
2H-

‖H-%- + 2R2H-∇$ log ?- %- − O-(%- , ')‖2
2 .P]

- Same amount of diffusion: R- = V- = R 2H-

$ %[1,*]|' : $ %1|' = E M, Σ ,

.%- = O-(%- , ').P + R 2H-. ST-, P: 0 → 1

89

Continuous-Time Limit: Diffusion SDE
• Re-define the time index: (→ (/H, 3C → 3C/B, and take limit H → ∞

/0[$ &[1,,] (6 &[1,,]

Objective:
• VI-style:

(%* ≔ %)

.%- = H-%-.P + R 2H-.T-, P: 1 → 0

Diffusion SDE
Augmented model:

Score param.
approx. posterior:

?(%[1,*]) satisfying ? %* = 6 %* ' ,

He et al. No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers. arXiv:2502.06685
Vargas et al. Denoising Diffusion Samplers. ICLR 2023
Li et al. Scalable Gradients for Stochastic Differential Equations. AISTATS 2020
Song et al. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 2021

• Conditions for a well-defined KL divergence between SDEs:

- Going in the same direction for analytic form of the KL: reverse either the ? SDE or the $ SDE
Reverse ? SDE:

78[$ % 1,* ' ? % 1,* = 78 $ %1 ' ‖?(%1) + R2:"[]
1

*

H-‖∇$ log ?- %- − ^/(%- , ', P)‖2
2 .P]

- Same amount of diffusion: R- = V- = R 2H-

$ %[1,*]|' : $ %1|' = E M, Σ ,

.%- = [H-%- + 2R2H-^/(%- , ', P)].P + R 2H-. ST-, P: 0 → 1

.%- = [H-%- + 2R2H-∇$ log ?-(%-)].P + R 2H-. ST-, P: 0 → 1

90

Estimating the Score
78[$ % 1,* ' ? % 1,* = 78 $ %1 ' ‖?(%1) + R2:"[]

1

*

H-‖∇$ log ?- %- − ^/(%- , ', P)‖2
2 .P]

He et al. No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers. arXiv:2502.06685
Vargas et al. Denoising Diffusion Samplers. ICLR 2023

.%- = H-%-.P + R 2H-.T-, P: 1 → 0

Diffusion SDE
Augmented model:

?(%[1,*]) satisfying ? %* = 6 %* ' ,

≔ -#()#|)%)

(we can sample)[',%] ∼ &)

Time marginal:
(ignore (notation)

?- %- = ∫E %- 1 − _-%*, R2_-I ?(%*).%*, _- = 1 − exp[−2∫-
*
H5.c]

91

Estimating the Score
78[$ % 1,* ' ? % 1,* = 78 $ %1 ' ‖?(%1) + R2:"[]

1

*

H-‖∇$ log ?- %- − ^/(%- , ', P)‖2
2 .P]

He et al. No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers. arXiv:2502.06685
Vargas et al. Denoising Diffusion Samplers. ICLR 2023

.%- = H-%-.P + R 2H-.T-, P: 1 → 0

Diffusion SDE
Augmented model:

?(%[1,*]) satisfying ? %* = 6 %* ' ,

?- %- = ∫E %- 1 − _-%*, R2_-I ?(%*).%*, _- = 1 − exp[−2∫-
*
H5.c]

≔ -#()#|)%)

(log derivative trick + Bayes’ Rule)

(we can sample)[',%] ∼ &)

Denoising Score Identity:

Time marginal:
(ignore (notation)

∇$! log ?- %- =
∫ ∇$!?-(%-|%*)?(%*).%*

?-(%-)
= ∫

?- %- %* ?(%*)
?-(%-)

∇$! log ?-(%-|%*) .%* = :6!($"|$!)[∇$! log ?-(%-|%*)]

92

Estimating the Score
78[$ % 1,* ' ? % 1,* = 78 $ %1 ' ‖?(%1) + R2:"[]

1

*

H-‖∇$ log ?- %- − ^/(%- , ', P)‖2
2 .P]

.%- = H-%-.P + R 2H-.T-, P: 1 → 0

Diffusion SDE
Augmented model:

?(%[1,*]) satisfying ? %* = 6 %* ' ,

?- %- = ∫E %- 1 − _-%*, R2_-I ?(%*).%*, _- = 1 − exp[−2∫-
*
H5.c]

≔ -#()#|)%)

Denoising Score Identity: (log derivative trick + Bayes’ Rule)

He et al. No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers. arXiv:2502.06685
Vargas et al. Denoising Diffusion Samplers. ICLR 2023
De Bortoli et al. Target Score Matching. arXiv:2402.08667
Akhound-Sadegh et al. Iterated Denoising Energy Matching for Sampling from Boltzmann Densities. ICML 2024

Target Score Identity: (Using properties of -()#|)%) as Gaussian)∇$! log ?- %- %* = −∇$" log ?-(%-|%*)

= −∇$" log
6! %* %- 6!($!)

6"($")
= ∇$" log ?*(%*) − ∇$" log ?-(%*|%-)

(we can sample)[',%] ∼ &)

Time marginal:
(ignore (notation)

∇$! log ?- %- =
∫ ∇$!?-(%-|%*)?(%*).%*

?-(%-)
= ∫

?- %- %* ?(%*)
?-(%-)

∇$! log ?-(%-|%*) .%* = :6!($"|$!)[∇$! log ?-(%-|%*)]

93

Estimating the Score
78[$ % 1,* ' ? % 1,* = 78 $ %1 ' ‖?(%1) + R2:"[]

1

*

H-‖∇$ log ?- %- − ^/(%- , ', P)‖2
2 .P]

.%- = H-%-.P + R 2H-.T-, P: 1 → 0

Diffusion SDE
Augmented model:

?(%[1,*]) satisfying ? %* = 6 %* ' ,

≔ -#()#|)%)

Denoising Score Identity: (log derivative trick + Bayes’ Rule)

He et al. No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers. arXiv:2502.06685
Vargas et al. Denoising Diffusion Samplers. ICLR 2023
De Bortoli et al. Target Score Matching. arXiv:2402.08667
Akhound-Sadegh et al. Iterated Denoising Energy Matching for Sampling from Boltzmann Densities. ICML 2024

Target Score Identity:

∇$! log ?-(%-) = :6!($"|$!,&) ∇$" log ?* %* − ∇$" log ?- %* %- = :6!($"|$!,&) ∇$" log ?* %*

(we can sample)[',%] ∼ &)

Time marginal:
(ignore (notation)

?- %- = ∫E %- 1 − _-%*, R2_-I ?(%*).%*, _- = 1 − exp[−2∫-
*
H5.c]

∇$! log ?- %- =
∫ ∇$!?-(%-|%*)?(%*).%*

?-(%-)
= ∫

?- %- %* ?(%*)
?-(%-)

∇$! log ?-(%-|%*) .%* = :6!($"|$!)[∇$! log ?-(%-|%*)]

94

Estimating the Score
78[$ % 1,* ' ? % 1,* = 78 $ %1 ' ‖?(%1) + R2:"[]

1

*

H-‖∇$ log ?- %- − ^/(%- , ', P)‖2
2 .P]

.%- = H-%-.P + R 2H-.T-, P: 1 → 0

Diffusion SDE
Augmented model:

?(%[1,*]) satisfying ? %* = 6 %* ' ,

Time marginal:
(ignore (notation)

≔ -#()#|)%)

He et al. No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers. arXiv:2502.06685
Vargas et al. Denoising Diffusion Samplers. ICLR 2023
De Bortoli et al. Target Score Matching. arXiv:2402.08667
Akhound-Sadegh et al. Iterated Denoising Energy Matching for Sampling from Boltzmann Densities. ICML 2024

(we can sample)[',%] ∼ &)

∇$! log ?-(%-) = :6!($"|$!)[∇$! log ?-(%-|%*)] = :6!($"|$!) ∇$" log ?* %*
Denoising Score Identity Target Score Identity

?- %- = ∫E %- 1 − _-%*, R2_-I ?(%*).%*, _- = 1 − exp[−2∫-
*
H5.c]

95

Estimating the Score
78[$ % 1,* ' ? % 1,* = 78 $ %1 ' ‖?(%1) + R2:"[]

1

*

H-‖∇$ log ?- %- − ^/(%- , ', P)‖2
2 .P]

.%- = H-%-.P + R 2H-.T-, P: 1 → 0

Diffusion SDE
Augmented model:

?(%[1,*]) satisfying ? %* = 6 %* ' ,

≔ -#()#|)%)

He et al. No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers. arXiv:2502.06685
Vargas et al. Denoising Diffusion Samplers. ICLR 2023
De Bortoli et al. Target Score Matching. arXiv:2402.08667
Akhound-Sadegh et al. Iterated Denoising Energy Matching for Sampling from Boltzmann Densities. ICML 2024

(we can sample)[',%] ∼ &)

Sampling %* ∼ ?-(%*|%-) via importance sampling:

∇$! log ?-(%-) = :6!($"|$!)[∇$! log ?-(%-|%*)] = :6!($"|$!) ∇$" log ?* %*
Denoising Score Identity Target Score Identity

?- %* %- ∝ ?* %* exp −
*

27#8!
%- − 1 − _-%* 2

2
∝ ?* %* exp −

*08!
27#8!

%* −
$!
*08! 2

2

≔ -()#|)%)
∝ 5)%;

+!
%$,!

, -
",!

%$,!
7 =: 9#()%|)#)

?- %- = ∫E %- 1 − _-%*, R2_-I ?(%*).%*, _- = 1 − exp[−2∫-
*
H5.c]Time marginal:

(ignore (notation)

96

Estimating the Score
78[$ % 1,* ' ? % 1,* = 78 $ %1 ' ‖?(%1) + R2:"[]

1

*

H-‖∇$ log ?- %- − ^/(%- , ', P)‖2
2 .P]

.%- = H-%-.P + R 2H-.T-, P: 1 → 0

Diffusion SDE
Augmented model:

?(%[1,*]) satisfying ? %* = 6 %* ' ,

≔ -#()#|)%)

He et al. No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers. arXiv:2502.06685
Vargas et al. Denoising Diffusion Samplers. ICLR 2023
De Bortoli et al. Target Score Matching. arXiv:2402.08667
Akhound-Sadegh et al. Iterated Denoising Energy Matching for Sampling from Boltzmann Densities. ICML 2024

(we can sample)[',%] ∼ &)

Sampling %* ∼ ?-(%*|%-) via importance sampling:

∇$! log ?-(%-) = :6!($"|$!)[∇$! log ?-(%-|%*)] = :6!($"|$!) ∇$" log ?* %*
Denoising Score Identity Target Score Identity

5)%;
+!
%$,!

, -
",!

%$,!
7 =: 9#()%|)#)

∇$! log ?-(%-) = :9!($"|$!)[e(%*)∇$! log ?-(%-|%*)] = :9!($"|$!) e(%*)∇$" log ?* %*

:)% ∝ -̃%()%) (unnormalized target density)

?- %- = ∫E %- 1 − _-%*, R2_-I ?(%*).%*, _- = 1 − exp[−2∫-
*
H5.c]Time marginal:

(ignore (notation)

97

Auxiliary VI → Diffusion Posterior (Continuous Time)

He et al. No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers. arXiv:2502.06685
Vargas et al. Denoising Diffusion Samplers. ICLR 2023
Akhound-Sadegh et al. Iterated Denoising Energy Matching for Sampling from Boltzmann Densities. ICML 2024

(%* ≔ %)
.%- = H-%-.P + R 2H-.T-, P: 1 → 0

Diffusion SDE
Augmented model:

Score param.
approx. posterior:

?(%[1,*]) satisfying ? %* = 6 %* ' (target density)

• A summary of the Diffusion algorithm applied to VI

$ %[1,*]|' : $ %1|' = E M, Σ ,

.%- = [H-%- + 2R2H-^/(%- , P)].P + R 2H-. ST-, P: 0 → 1

• Objective: VI style, 78[$ % 1,* ' ? % 1,* :

:"[]
1

*

H-‖∇$ log ?- %- − ^/(%- , ', P)‖2
2 .P]

(estimated via importance sampling
+ denoising/target score identity)

• After fitting the posterior (i.e., ^/(%- , P)):

Sample %1 ∼ $(%1|'),
and simulate the approx. posterior SDE
to get approximately %* ∼ 6(%*|')

Fit $(%1|'), ^/(%- , ', P) by min. 78[$(%1|')‖?(%1)] plus

98

Example: Molecular Dynamics Simulations
Benchmark: Lennard-Jones Potential (LJ-5)
• Goal: study intermolecular interactions

• A molecule is a system of @ atoms (“particles”) & = [&,, … , &7]
• Each particle &8 has its own 3D coordinates (so dim & = 3@)

&8 = [&8
%, &8

9, &8
']

• Define ?:; = %: − %; 2

2
, the Lennard-Jones potential is:

f<= ?:; , g,M ≔
>$
6%&
$ −

?'
6%&
'

• Widely used example: Lennard-Jones 12-6 potential (g = 12, h9 = 4jR*2, M = 6, l@ = 4jRA)

F:; 68< ≔ 4H
=./
)01./

−
=2
)012

(min
3
?45 - = −A)

Target distribution: I & ∝ exp[−
> '
+6/

], 5 & ≔ ∑8,<?8F:;(68<)

99

Example: Molecular Dynamics Simulations

Akhound-Sadegh et al. Iterated Denoising Energy Matching for Sampling from Boltzmann Densities. ICML 2024

Histogram of energy values at samples Histogram of ?:; at samples

LJ13: Lennard-Jones 12-6 potential, E = 13 particles (dim % = 39)

100

Example: Molecular Dynamics Simulations

Havens et al. Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching. ICML 2025

Sampling conformations based on energy functions in (quantum) density functional theory (DFT)

Conformers of a molecule:
• spatial arrangements determined by locally stable configurations of

rotations around its bonds
• i.e., local minima on the molecule’s potential energy surface

• can be interconverted by rotations around single bonds

%1 %*

(7(9) defined by a pre-trained NN on SPICE-MACE-OFF dataset)

101

Summary (Diffusion-based Approximations)
Constructing flexible ' distribution via mixtures:

• Hierarchical mixtures (very flexible)
• The VI objective needs to be augmented (adding in the ! distributions)
• Add many layers and take continuous-limit: Diffusion-based approximations

• Be careful about the validity of the KL divergence definition
• Similar to diffusion generative model training except for the score estimation method

⋯⋯3! 3C &5265 3K
-()#$&#|)#)

&()#|)#$&#, +)
%

1()%|+) &()'|+)

original model augmented latent variable space

1(+|)%)

102

Designing ! Distributions

Normalizing flows
Auxiliary variables & mixture distributions

Use many layers (hierarchical) + continuous-time limit

Diffusion SDE & Continuous Normalizing Flow posteriors for approximate inference

103

Normalizing Flows (Discrete Time)
• Change-of-variable formula:

• % is a random variable with probability density function (PDF) Ar %
• y = K(%) is an invertible mapping
• The probability mass is preserved, and the PDF for V = K(%) satisfies

As V = Ar % |det(t2
tu
)|

Ar % = As V |det(
JV
J%)|

' v

+% +6 hypercube
approximation

(exact when
vol E+ → 0)

As V JV = Ar % J%
prob. mass of region around 'prob. mass of region around v

104

Normalizing Flows (Discrete Time)
• Variational inference with normalizing flow

• Assume "H #H = % #H; 0,)
• Define # = *I(#H) where *I(⋅) is an invertible mapping parameterized by .

" # = "H(#H)| det JK
JKB

|LM with #H = *ILM(#)

by def. of $(&)

reparam. trick:
) ∼ &) ⇔)' ∼ &')' ,) = O;()')

• Fit " # to 3 4 #) with VI:

0 $ & = 5!(') log 3 (&) + log 3 & − log $ &

= 5!(') log 3((, &) − log $1(&1 = O@
2,(&))| det A'

A'<
|2,

= 5!<('<) log 3((, O@(&1)) − log $1 &1 + log | det
AB=
A'<

|

• Computing ELBO requires log | det JPC
JKB

|
Rezende and Mohamed. Variational Inference with Normalizing Flows. ICML 2015 105

Normalizing Flows (Discrete Time)
• Variational inference with normalizing flow

• Idea: define Hw such that log | det)*(
)+)

| is easy to compute!
• Chain simple invertible mappings together to make a flexible mapping

• For each mapping, hopefully the Jacobian log-determinant is easy to compute

⇒ log | det
.z/
.%1

| = {
!.*

D

log | det(
.%!
.%!0*

) |

%1 %* % ≔ %D

z/ = UD ∘ UD0* ∘ ⋅⋅⋅ ∘ U*, U! ⋅ ≔ U/*(⋅), 9 = 9! !.*
D

Rezende and Mohamed. Variational Inference with Normalizing Flows. ICML 2015

How about the continuous-time limit?
(~ → ~/7, 7 → ∞)

106

Continuous-Time Limit: Continuous Normalizing Flows

• Continuous Normalizing Flows (CNFs):

3! = H 3K , H 3K ≔ 3K + ∫K
!\C 3C J(

Figure adapted from Grathwohl et al. ICLR 2019

• Change-of-variable rule:

OC log AC 3C = −∇1 ⋅ \C 3C
61(%)

6*(%)

log A! 3! = log AK(3K) −]
K

!

∇1 ⋅ \C 3C J(

(expensive to compute!)

• Motivation: Enhanced expressiveness

107

Continuity Equation

• Fokker-Planck Equation: marginal density evolution of
/:(#), 0: 0 → 1, for any # (not necessarily for # = #:)

J3C = \C 3C J(+ MC 3C JNC, 3K ∼ AK(3K)

OC AC(3) = −∇1 ⋅ \C 3 AC 3 +
1
2∇1

Y ⋅ (MCY 3 AC(3))

• Forward SDE evolution of #:, 0: 0 → 1

108

Continuity Equation (Cont.)

• Fokker-Planck Equation: marginal density evolution of
/:(#), 0: 0 → 1, for any # (not necessarily for # = #:)

J3C = \C 3C J(+ MC 3C JNC, 3K ∼ AK(3K)

OC AC(3) = −∇1 ⋅ \C 3 AC 3 +
1
2∇1

Y ⋅ (MCY 3 AC(3))

• Forward ODE evolution of #:, 0: 0 → 1

• Straight-forward reverse simulation of #:, 0: 1 → 0
J3C = \C 3C J(, 3! ∼ A!(3!) ⇒ 3CDÄ, ≈ 3C − \C 3C `(

Divide 35(&) on both sides: OC log AC 3 = −∇1 ⋅ \C 3 − ⟨∇1 log AC 3 , \C 3 ⟩

109

Continuous-Time Limit: Continuous Normalizing Flows

• Continuous Normalizing Flows (CNFs):

3! = H 3K , H 3K ≔ 3K + ∫K
!\C 3C J(

OC log AC 3 = −∇1 ⋅ \C 3 − ⟨∇1 log AC 3 , \C 3 ⟩

• Probability density evolves: AC 3 C∈[K,!] satisfy

Figure adapted from Grathwohl et al. ICLR 2019

• Note the difference from change-of-variable rule:

OC log AC 3C = −∇1 ⋅ \C 3C

61(%)

6*(%)

110

CNF-Based Posterior
• Specify a density path:

AC 3 C∈[K,!]: AC 3 = !
Ç,
exp[−=C(3)],

AK(3) easy to sample, A! 3 = 0 3 , i.e., =! 3 ≔ =(3)

Tian et al. Liouville Flow Importance Sampler. ICML 2024
Mate and Fleuret. Learning Interpolations between Boltzmann Densities. TMLR 2023
Chen et al. Neural Flow Samplers with Shortcut Models. arXiv:2502.07337

E.g., tempering:
:- % = H-:1 % + 1 − H- :(%),

H1 = 1, H* = 0

Q) =
1
S
exp[−"())]

111

CNF-Based Posterior

• Learn a CNF network ()(!, ") by minimizing L2 error (“PINN loss”):

• Specify a density path:
AC 3 C∈[K,!]: AC 3 = !

Ç,
exp[−=C(3)],

AK(3) easy to sample, A! 3 = 0 3 , i.e., =! 3 ≔ =(3)

; \w ≔ =0,(1)[‖ OC log AC 3 + ∇1 ⋅ \w 3, (+ ⟨∇1 log AC 3 , \w 3, (⟩ ‖YY]
Ensuring continuity equation to hold for every & ∼ $5(&)

Tian et al. Liouville Flow Importance Sampler. ICML 2024
Mate and Fleuret. Learning Interpolations between Boltzmann Densities. TMLR 2023
Chen et al. Neural Flow Samplers with Shortcut Models. arXiv:2502.07337

E.g., tempering:
:- % = H-:1 % + 1 − H- :(%),

H1 = 1, H* = 0

Q) =
1
S
exp[−"())]

112

CNF-Based Posterior

• Learn a CNF network ()(!, ") by minimizing L2 error (“PINN loss”):

• Specify a density path:
AC 3 C∈[K,!]: AC 3 = !

Ç,
exp[−=C(3)],

AK(3) easy to sample, A! 3 = 0 3 , i.e., =! 3 ≔ =(3)

• Simulate samples from 7(#) (approximately) by solving ODE:

%K ∼ AK 3 , 3! ≔ 3K +]
K

!

\w 3C, (J(
Tian et al. Liouville Flow Importance Sampler. ICML 2024
Mate and Fleuret. Learning Interpolations between Boltzmann Densities. TMLR 2023
Chen et al. Neural Flow Samplers with Shortcut Models. arXiv:2502.07337

E.g., tempering:
:- % = H-:1 % + 1 − H- :(%),

H1 = 1, H* = 0

Q) =
1
S
exp[−"())]

; \w ≔ =0,(1)[‖ OC log AC 3 + ∇1 ⋅ \w 3, (+ ⟨∇1 log AC 3 , \w 3, (⟩ ‖YY]
Ensuring continuity equation to hold for every & ∼ $5(&)

113

CNF-Based Posterior

• Challenges:
• Selecting the “training distribution” #C(3) and estimating the expectation

• Not necessary for "W # = 3W(#) but ideally "W # ≈ 3W(#)

; \w ≔ =0,(1)[‖ OC log AC 3 + ∇1 ⋅ \w 3, (+ ⟨∇1 log AC 3 , \w 3, (⟩ ‖YY]

3K ∼ AK 3 , 3! ≔ 3K +]
K

!

\w 3C, (J(

Training:

Sampling:

= −∇'55(&)

Q) =
1
S
exp[−"())]

Chen et al. Neural Flow Samplers with Shortcut Models. arXiv:2502.07337 114

CNF-Based Posterior

• Challenges:
• Selecting the “training distribution” #C(3) and estimating the expectation

• Not necessary for "W # = 3W(#) but ideally "W # ≈ 3W(#)

AC 3 ≔ !
Ç,
exp[−=C(3)] ⇒ OC log AC 3 = −OC=C 3 − OC log gC

(intractable)

• Estimating OC log AC(3):

= −∇'55(&)

Q) =
1
S
exp[−"())]

Chen et al. Neural Flow Samplers with Shortcut Models. arXiv:2502.07337

; \w ≔ =0,(1)[‖ OC log AC 3 + ∇1 ⋅ \w 3, (+ ⟨∇1 log AC 3 , \w 3, (⟩ ‖YY]

3K ∼ AK 3 , 3! ≔ 3K +]
K

!

\w 3C, (J(

Training:

Sampling:

115

CNF-Based Posterior

• Challenges:
• Selecting the “training distribution” #C(3) and estimating the expectation

• Not necessary for "W # = 3W(#) but ideally "W # ≈ 3W(#)

AC 3 ≔ !
Ç,
exp[−=C(3)] ⇒ OC log AC 3 = −OC=C 3 − OC log gC

(intractable)

• Estimating OC log AC(3):

• Solving the ODE flow simulation in a fast way

= −∇'55(&)

Q) =
1
S
exp[−"())]

Chen et al. Neural Flow Samplers with Shortcut Models. arXiv:2502.07337

; \w ≔ =0,(1)[‖ OC log AC 3 + ∇1 ⋅ \w 3, (+ ⟨∇1 log AC 3 , \w 3, (⟩ ‖YY]

3K ∼ AK 3 , 3! ≔ 3K +]
K

!

\w 3C, (J(

Training:

Sampling:

116

Using “Training Data” !"(#)
; \w ≔ =0,(1)[‖ OC log AC 3 + ∇1 ⋅ \w 3, (+ ⟨∇1 log AC 3 , \w 3, (⟩ ‖YY]

• Sampling under !: # ≈ /:(#) via velocity-driven SMC:
• A typical SMC method (e.g., Hamiltonian AIS):

• Pick 0 = P1 < P* < P2 < ⋯ < PE = 1 and run SMC with path 6-' %
@.1

E
 as proposals

• Compute the importance weights by accumulating density ratios through time
• Resampling is required by monitoring ESS

• The steps for approximately drawing samples from ACÖ(3):
• Transport from previous step: %̃-' = %-'+" + ∫-'+"

-' á/ %- , P .P (“prediction”)

• Run (short-chain) HMC: %-' = àâä %̃-' (“correction”)

Neal. Annealed Importance Sampling. Stats. Comp., 2001
Neal. MCMC using Hamiltonian Dynamics. Handbook of MCMC, 2010
Chen et al. Neural Flow Samplers with Shortcut Models. arXiv:2502.07337

Q) =
1
S
exp[−"())]

117

Estimating %" log)"
Q5 log R5 =

1

R5
Q5Texp[−55(&)] U& = −

1

R5
Texp −55 & Q555 & U& = −5*> ' [Q555(&)]

Monte Carlo estimate
can have high variance!

• Solution: Stein control variate with 3ã ∼ AC(3)

−=å, 1 OC= 3 ≈ !
"
∑ãç!" −OC=C 3ã + i ∇1 ⋅ \w 3ã, (+ ⟨∇2 log AC (3ã), \w 3ã, (⟩

(Langevin-Stein Operator)

Liu et al. Action-dependent Control Variates for Policy Optimization via Stein Identity. ICLR 2018
Chen et al. Neural Flow Samplers with Shortcut Models. arXiv:2502.07337

Q) =
1
S
exp[−"())]

118

Variance Reduction for Monte Carlo

• Control variate method:
• Assume we want to estimate with MC simulation

=0(1) j 3 ≈ !
"
∑ãç!" j 3ã , 3ã ∼ #(3)

• Control variate: define a control function k(3) satisfying:
• F! ' V & < ∞

• Known or fast computable 5! ' V &

3

3

119

Variance Reduction for Monte Carlo

• Control variate method:
• Then define the new MC estimator

=0(1) j 3 ≈ !
"
∑ãç!" lj 3ã , 3ã ∼ # 3 ,

=0 é [k(7)]k 7j 7lj 7 = − +

F!(') YZ & = F!(') Z & + F!(') V & − 2 \]^! ' [Z & , V(&)]

< 0 if è and ê are strongly and positively correlated

&

120

Estimating %" log)"
Q5 log R5 =

1

R5
Q5Texp[−55(&)] U& = −

1

R5
Texp −55 & Q555 & U& = −5*> ' [Q555(&)]

Monte Carlo estimate
can have high variance!

• Stein’s Identity ensures unbiasedness: for any ^@(&, _)

:F!($) ∇$ ⋅ á/ %, P + ⟨∇$ log 6- (%), á/ %, P ⟩ = 0

Liu et al. Action-dependent Control Variates for Policy Optimization via Stein Identity. ICLR 2018
Chen et al. Neural Flow Samplers with Shortcut Models. arXiv:2502.07337

• Continuity equation for globally optimal ^@ &, _

−ì-:- % + ∇$ ⋅ á/ %, P + ∇$ log 6- % , á/ %, P = ì- log î-

⇒ Variance is 0 when H = 1 and á/(%, P) is optimal
≔ X#(); Y;(), Z))

Q) =
1
S
exp[−"())]

• Solution: Stein control variate with 3ã ∼ AC(3)

−=å, 1 OC= 3 ≈ !
"
∑ãç!" −OC=C 3ã + i ∇1 ⋅ \w 3ã, (+ ⟨∇2 log AC (3ã), \w 3ã, (⟩

(Langevin-Stein Operator)

z
z

121

Speeding up with Shortcuts
3K ∼ AK 3 , 3! ≔ 3K +]

K

!

\w 3C, (J(Sampling:
Naïve Euler method
requires a lot of steps!

Solution: Shortcut models
3Cït ← 3C + nw 3C, (, J J

Frans et al. One Step Diffusion via Shortcut Models. ICLR 2025

• Training a neural flow shortcut sampler:

ñ8 ^/ ≔ 8 ^/ ⋅,⋅, 0 + :" $!,G ‖^/ %- , P, 2. −
*

2
^/ %- , P, . −

*

2
^/(%-HG , P + ., .)‖2

2

flow learning enforcing consistency

Q) =
1
S
exp[−"())]

• `@ &5, _, 0 ≔ ^@(&5, _)

• `@ &5, _, 2U =
,
- `@ &5, _, U +

,
- `@(&5CA, _ + U, U)

• A shortcut model `D is a valid ODE solver if for any &5:
%-

%-

&5
?

?

-

122

Examples & Applications

Midgley et al. Flow Annealed Importance Sampling Bootstrap. ICLR 2023
Akhound-Sadegh et al. Iterated Denoising Energy Matching for Sampling from Boltzmann Densities. ICML 2024
Tian et al. Liouville Flow Importance Sampler. ICML 2024
Chen et al. Neural Flow Samplers with Shortcut Models. arXiv:2502.07337

• “Ground Truth”: samples from mixture of Gaussians
• FAB: normalising flow transport map, trained by alpha-divergence, “data” from AIS + replay buffer
• iDEM: diffusion-based, score estimation via importance sampling + replay buffer
• LFIS: continuity equation-based loss, no amortization across P, simple importance sampling for ì- log î-

Target ó(%): mixture of 40 Gaussians

123

Examples & Applications
Target ó(%): mixture of 40 Gaussians

Chen et al. Neural Flow Samplers with Shortcut Models. arXiv:2502.07337
124

Examples & Applications
Target ó(%): mixture of 40 Gaussians

Chen et al. Neural Flow Samplers with Shortcut Models. arXiv:2502.07337

Ablation: Training with or without the shortcut consistency loss

ñ8 ^/ ≔ 8 ^/ ⋅,⋅, 0 + :" $!,G ‖^/ %- , P, 2. −
*

2
^/ %- , P, . −

*

2
^/(%-HG , P + ., .)‖2

2

flow learning enforcing consistency

125

Examples & Applications
Target ó(%): MW32 (32D Many-Well potential with 2*A = 65,536 modes) (only showing two dimensions here)

Chen et al. Neural Flow Samplers with Shortcut Models. arXiv:2502.07337
126

Examples & Applications

Chen et al. Neural Flow Samplers with Shortcut Models. arXiv:2502.07337

Target ó(%): LJ-13 (39D, energy dependent on atom distances)

F:; 68< ≔ 4H
=./
)01./

−
=2
)012

I & ∝ exp[−
> '
+6/

], 5 & ≔ ∑8,<?8F:;(68<), 68< = &8 − &< -
-

127

Summary (CNF-based Approximations)
Constructing flexible ! distribution via transport:

• Normalizing flows as stacking invertible transformations (very flexible)
• The VI objective needs to compute log | det tB

t1
|

• Add many layers and take continuous-limit: CNF-based approximations
• The log-determinant requires explicitly integrating an ODE (expensive)

• “simulation-free” approach by leveraging the continuity equation (“PINN loss”)

• Many challenges need solutions

; \w ≔ =0,(1)[‖ OC log AC 3 + ∇1 ⋅ \w 3, (+ ⟨∇1 log AC 3 , \w 3, (⟩ ‖YY]

3K ∼ AK 3 , 3! ≔ 3K +]
K

!

\w 3C, (J(

Training:

Sampling:

128

Designing ! Distributions

Normalizing flows
Auxiliary variables & mixture distributions

Use many layers (hierarchical) + continuous-time limit

Diffusion SDE & Continuous Normalizing Flow posteriors for approximate inference
Converting between each other? 129

CNF-Based Posterior

• Learn a CNF network ()(!, ") by minimizing L2 error (“PINN loss”):

• Specify a density path:
AC 3 C∈[K,!]: AC 3 = !

Ç,
exp[−=C(3)],

AK(3) easy to sample, A! 3 = 0 3 , i.e., =! 3 ≔ =(3)

• Simulate samples from 7(#) (approximately) by solving ODE:

%K ∼ AK 3 , 3! ≔ 3K +]
K

!

\w 3C, (J(

; \w ≔ =0,(1)[‖ OC log AC 3 + ∇2 ⋅ \w 3, (+ ⟨∇1 log AC 3 , \w 3, (⟩ ‖YY]
Ensuring continuity equation to hold for every & ∼ $5(&)

Q) =
1
S
exp[−"())]

130

CNF-Based Posterior

• Learn a CNF network ()(!, ") by minimizing L2 error (“PINN loss”):

• Specify a density path:
AC 3 C∈[K,!]: AC 3 = !

Ç,
exp[−=C(3)],

AK(3) easy to sample, A! 3 = 0 3 , i.e., =! 3 ≔ =(3)

• Simulate samples from 7(#) (approximately) by solving ODE:

%K ∼ AK 3 , 3! ≔ 3K +]
K

!

\w 3C, (J(

; \w ≔ =0,(1)[‖ OC log AC 3 + ∇2 ⋅ \w 3, (+ ⟨∇1 log AC 3 , \w 3, (⟩ ‖YY]
Ensuring continuity equation to hold for every & ∼ $5(&)

Q) =
1
S
exp[−"())]

This path can also be defined via diffusion!
.%- = H-%-.P + R 2H-.T-, P: 1 → 0

require estimations

131

CNF-Based Posterior
• Specify a density path:

AC 3 C∈[K,!]: AC 3 = !
Ç,
exp[−=C(3)],

AK(3) easy to sample, A! 3 = 0 3 , i.e., =! 3 ≔ =(3)

Q) =
1
S
exp[−"())]

This path can also be defined via diffusion!
.%- = H-%-.P + R 2H-.T-, P: 1 → 0

6- %- = ∫E %- 1 − _-%*, R2_-I 6*(%*).%*, _- = 1 − exp[−2∫-
*
H5.c]Time marginal:

≔ 1#()#|)%)

Estimate the score ∇$! log 6-(%-) via importance sampling:

Denoising Score Identity Target Score Identity

5)%;
+!
%$,!

, -
",!

%$,!
7 ≔ 9#()%|)#)

∇$! log 6-(%-) = :9!($"|$!)[e(%*)∇$! log 6-(%-|%*)] = :9!($"|$!) e(%*)∇$" log ?* %*
:)% ∝ exp[−"%()%)] (unnormalized target density)

132

CNF-Based Posterior
• Specify a density path:

AC 3 C∈[K,!]: AC 3 = !
Ç,
exp[−=C(3)],

AK(3) easy to sample, A! 3 = 0 3 , i.e., =! 3 ≔ =(3)

Q) =
1
S
exp[−"())]

This path can also be defined via diffusion!
.%- = H-%-.P + R 2H-.T-, P: 1 → 0

6- %- = ∫E %- 1 − _-%*, R2_-I 6*(%*).%*, _- = 1 − exp[−2∫-
*
H5.c]Time marginal:

≔ 1#()#|)%)

Estimate the score ∇$! log 6-(%-) via importance sampling:

Denoising Score Identity Target Score Identity

5)%;
+!
%$,!

, -
",!

%$,!
7 ≔ 9#()%|)#)

∇$! log 6-(%-) = :9!($"|$!)[e(%*)∇$! log 6-(%-|%*)] = :9!($"|$!) e(%*)∇$" log ?* %*
:)% ∝ exp[−"%()%)] (unnormalized target density)

Estimate the “time-score” ì- log 6-(%-) also via importance sampling:

ì- log 6-(%-) = :9!($"|$!)[e %* ì- log 6- %- %*]

133

Converting Between ODEs and SDEs

• Fokker-Planck Equation: marginal density evolution of
/:(#), 0: 0 → 1, for any # (not necessarily for # = #:)

J3C = KC 3C J(+ MCJNC

Q5 35(&) = −∇' ⋅ ;5 & 35 & +
,
-∇'

- ⋅ (>5-35(&))

• Forward ODE/SDE evolution of #:, 0: 0 → 1, #c ∼ /c(#c)

J3C = \C 3C J(

Q5 35(&) = −∇' ⋅ ^5 & 35 &

CNF-based sampler (ODE) Diffusion-based sampler (SDE)

CNF-based sampler (ODE) Diffusion-based sampler (SDE)

Song et al. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 2021
134

Converting Between ODEs and SDEs

• Fokker-Planck Equation: marginal density evolution of
/:(#), 0: 0 → 1, for any # (not necessarily for # = #:)

J3C = KC 3C J(+ MCJNC

Q5 35(&) = −∇' ⋅ ;5 & 35 & +
,
-∇'

- ⋅ (>5-35(&))

• Forward ODE/SDE evolution of #:, 0: 0 → 1, #c ∼ /c(#c)

J3C = \C 3C J(

Q5 35(&) = −∇' ⋅ ^5 & 35 &

CNF-based sampler (ODE) Diffusion-based sampler (SDE)

CNF-based sampler (ODE) Diffusion-based sampler (SDE)

∇+@ ⋅]#@1#) = ∇+ ⋅ [∇+]#@1#)]

∇+]#@1#) = 1#())]#@∇A log 1#())

Song et al. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 2021
135

Converting Between ODEs and SDEs

• Fokker-Planck Equation: marginal density evolution of
/:(#), 0: 0 → 1, for any # (not necessarily for # = #:)

J3C = KC 3C J(+ MCJNC

• Forward ODE/SDE evolution of #:, 0: 0 → 1, #c ∼ /c(#c)

J3C = \C 3C J(

Q5 35(&) = −∇' ⋅ ^5 & 35 &

CNF-based sampler (ODE) Diffusion-based sampler (SDE)

CNF-based sampler (ODE) Diffusion-based sampler (SDE)

Making both samplers to induce the same density path: ^5(&) = ;5 & −
=>/
- ∇' log 35 &

Q5 35(&) = −∇' ⋅ ;5 & −
=>/
- ∇' log 35 & 35(&)

(“Probability flow ODE”)

Song et al. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 2021
136

Converting Between CNF and Diffusion Samplers

U&5 = [d5&5 + 2>-d5`@(&5, _)]U_ + > 2d5Ue5

• Forward ODE/SDE evolution of #:, 0: 0 → 1, #c ∼ /c(#c)

U&5 = ^@ &5, _ U_

CNF-based sampler (ODE) Diffusion-based sampler (SDE)

Making both samplers to induce the same density path 35 & 5∈[1,,]:

^@(&5, _) = d5&5 + 2>-d5`@(&5, _) − >-d5∇' log 35 & ≈ d5&5 + >-d5`@(&5, _)

6- %- = ∫E %- 1 − _-%*, R2_-I 6*(%*).%*, _- = 1 − exp[−2∫-
*
H5.c]

• Building the density path by diffusing #g ∼ /g #g ≔ 7(#g):
.%- = H-%-.P + R 2H-.T-, P: 1 → 0

Song et al. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 2021
137

Converting Between CNF and Diffusion Samplers

Figure adapted from Song et al. ICLR 2021

6* % ≔ ó(%) 6* % ≔ ó(%)61 %

&1&, &,

sample evolution: SDE vs Probability flow ODE, Y#()) = _#) − -!"

@
∇+ log 1#)

density evolution

E)# = Y#)# EZ, Z: 0 → 1E)# = Y#)# EZ, Z: 1 → 0

E)# = _#)# EZ +]#Ea#, Z: 0 → 1 E)# = _#)# EZ −]#@ ∇+ log 1#()#) +]#Ea#, Z: 1 → 0

b# 1#()) = −∇+ ⋅ _#) 1#) + %
@
∇+@ ⋅ (]#@1#()))

b# 1#()) = −∇+ ⋅ Y#) 1#)
138

Why Can We Construct So Many Different
Diffusion/CNF-based Approximations?

• Ultimately, we only care about distribution match # 3! ≈ A! 3! ≔ 0 3! !

9! ∼ C(0, E) 9" = G(9!)Transformation G

9!# ∼ C(0, E) 9"# = G′(9!#)Transformation G′

.#
I$"

Rotate:
9!# = I(9!)

Unidentifiability:
Given $IJK %* = $LMNO %* ,
we cannot show äEè = äEè′,

where äEè′ = probability flow of öõ:′,
(unless you make further assumptions)!

(The causal representation learning community should have known this result by heart :) 139

Design Principles II
Recall Design Principles I:

Step 1: Specify a divergence õ($; ó) between variational density $(%) and target ó(%)

Step 2: Find the member of the family $∗ ∈ ú that minimizes the divergence, i.e.,
$∗ = *?ùMûg"∈R õ($; ó)

Step 3: Use variational density $∗	instead of target ó in downstream tasks: e.g.,
:S $ è % ≈ :"∗ $ è % ≈

*

D
∑!
D è %! , %! ∼ $∗(%)

Tractability
• Easy and fast to evaluate $(%)

• Fast sampling from its distribution
 (e.g., to approximate expectations)

• Ease of optimization

Expressivity
• correlations

• Skew and kurtosis

• Multi-modality

140

Design Principles II

Step 1: Specify a divergence õ($; ó) between variational density $(%) and target ó(%)

Step 2: Find the member of the family $∗ ∈ ú that minimizes the divergence, i.e.,
$∗ = *?ùMûg"∈R õ($; ó)

Step 3: Use variational density $∗	instead of target ó in downstream tasks: e.g.,
:S $ è % ≈ :"∗ $ è % ≈

*

D
∑!
D è %! , %! ∼ $∗(%)

a differentiable and easy-to-evaluate objective 8($; ó)
whose global optimum is $∗ = ó if ó ∈ ú

$∗ = *?ùMûg"∈R 8($; ó)

Tractability
• Easy and fast to evaluate $(%)

• Fast sampling from its distribution
 (e.g., to approximate expectations)

• Ease of optimization

Expressivity
no need in many cases

can accept slower sampling speed

and not too slow

towards

universal

distribution

approximators

141

Other Methods (Not Covered Today)

Structured approximations Implicit approximate posteriors

Other designs of $ distributions

Mescheder et al. Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks. ICML 2017
Tran et al. Hierarchical Implicit Models and Likelihood-Free Variational Inference. NeurIPS 2017
Li and Turner. Gradient Estimators for Implicit Models. ICLR 2018
Yin and Zhou. Semi-Implicit Variational Inference. ICML 2018

Particle-based posteriors

142

Other Methods (Not Covered Today)

VI with α
divergence

ELBO with KL

VI with f divergence

Perturbative
VI

VI with IPM

VI with
Stein

discrepancy

Other variational objectives

Fisher

(VI with f-divergences, Wasserstein distance, Stein discrepancy, SVGD, etc… ask us for references) 143

Other Methods (Not Covered Today)
Deriving log î estimates → an approximate inference method to obtain $

Domke and Sheldon. Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation. NeurIPS 2019
Wainwright and Jordan. Graphical Models, Exponential Families, and Variational Inference. FTML 2008.

%* %2 %T

%U %V %A

O$→X(%) OX→$(%)

U*2 U2T

UTAU*U

UUV UVA

U2V

MC sample
Antithetic sample

Variational inference

Antithetic sampling

Monte Carlo estimators:
î = :"($)[¢(%)]

⇒ log î = log:"($)[¢(%)] ≥ :" $ [log ¢(%)]

Free-energy approximation methods:
log î ≈ 8YZ[\Z[$(%)]

144

Other Methods (Not Covered Today)
Combining approximate inference and sampling

When needing efficient sampling for all 6 %|' , ∀':
find the optimal proposal distributions via amortized approximate inference

(Neural SMC, Amortised MCMC/IS estimation, Sliced Sampling, Meta learning for MCMC, etc… ask us for references)

Importance Sampling
& SMC

Rejection Sampling & MH MCMC (e.g., Langevin dynamics)

145

Future Challenges & Opportunities

Score-based approximate inference approaches
• Methods for further advances:

• more expressive families
• scale to high-dimensions?

• Statistical properties:
• estimation guarantees?
• computational vs statistical tradeoffs? (consistency + convergence)

• Applications:
• Amortized inference?
• New insights for generative modeling?

146

Future Challenges & Opportunities

Diffusion & Flow based approaches
• Training difficulties: truly simulation-free approach?

• Not truly simulation-free: requiring (importance) sampling from the
density path AC 3 C∈[K,!]

• Diffusion: estimating the score

• CNF with PINN loss: constructing “training data” $5(&)
• Quality of IS/SMC is crucial to the empirical success!

• Can we develop other training methods that are truly simulation-free?

He et al. No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers. arXiv:2502.06685 147

Future Challenges & Opportunities

Diffusion & Flow based approaches
• “Is it worth it?”

• Sometimes your scientist friend only cares about only one
 (very difficult) potential function…
• Maybe yes, in amortized setting: train # 3 % ≈ A(3|%)
• vs (gradient-based) MCMC? Is it really better?

• E.g. in training energy-based model with contrastive divergence?

vs

148

Future Challenges & Opportunities

Generally not solved yet:
• Better computation & implementation

• Hardware-aware methods
• E.g., GPU acceleration with CUDA and/or Triton, etc

• Robust Implementation of advanced VI in statistics software
• Flexible $ distributions

• Good optimization

Stan NumPyro Turing.jl

149

Future Challenges & Opportunities

Generally not solved yet:
• Better statistical theory for approximate inference

• Optimization & statistical properties
• e.g. (non-)asymptotic behavior, estimation of moments

• Convergence behavior in optimization?

• VAE learning for model A: bias induced by sub-optimal p family?

log 6(')

78 $(%|') 6(%|')

8 9 = :"($|&) log 6 '|% − 78[$(%|')‖6(%)]

150

Future Challenges & Opportunities
Doing probabilistic inference for/with LLMs?
• Speeding-up LLM decoding?

• E.g., speculative decoding as a “weird way” to do rejection sampling

• LLM “reasoning”?
• RL-based finetuning: connection with VI/SMC in SSMs

• “Steered sampling”: connections with IS/SMC/MCMC

• Using LLMs to build informative priors?
• Posterior inference still requires approximations

• LLM “in-context learning” as Bayesian inference?
• Prediction-centric formulation, still requires approximations

(too many references due to LLM community efforts, ask us if interested) 151

Diana Cai
dcai@flatironinstitute.org

Yingzhen Li
yingzhen.li@imperial.ac.uk

Thank You!
Questions? Ask now or contact us via email :)

152

mailto:dcai@flatironinstitute.org
mailto:yingzhen.li@imperial.ac.uk

